The evolution of streams in a time-dependent potential

We study the evolution of streams in a time-dependent spherical gravitational potential. Our goal is to establish what are the imprints of this time evolution on the properties of streams as well as their observability. To this end, we have performed a suite of test-particle experiments for a host system that doubles its mass during the integration time and for a variety of initial conditions. In these experiments we found that the most striking imprint is a misalignment of ~10° in the angular location of the apocentres of the streams compared to the static case (and to the orbit of the centre of mass), which only becomes apparent for sufficiently long streams. We have also developed an analytic model using action-angle variables which allows us to explain this behaviour and to identify the most important signature of time evolution, namely a difference in the slope defined by the distribution of particles along a stream in frequency and in angle space. Although a difference in slope can arise when the present-day potential is not correctly modelled, this shortcoming can be by-passed because in this case, streams are no longer straight lines in angle space, but depict a wiggly appearance and an implausible energy gradient. The difference in slope due to time evolution is small, typically ~10-2 and its amplitude depends on the growth rate of the potential, but nonetheless we find that it could be observable if accurate full-space information for nearby long streams is available. On the other hand, disregarding this effect may bias the determination of the present-day characteristics of the potential. Appendices are available in electronic form at http://www.aanda.org

[1]  J. Binney,et al.  A fast algorithm for estimating actions in triaxial potentials , 2014, 1412.2093.

[2]  D. D. Carpintero,et al.  AND YET IT MOVES: THE DANGERS OF ARTIFICIALLY FIXING THE MILKY WAY CENTER OF MASS IN THE PRESENCE OF A MASSIVE LARGE MAGELLANIC CLOUD , 2014, 1408.4128.

[3]  D. Hogg,et al.  MILKY WAY MASS AND POTENTIAL RECOVERY USING TIDAL STREAMS IN A REALISTIC HALO , 2014, 1406.6063.

[4]  V. Belokurov,et al.  `Skinny Milky Way please', says Sagittarius , 2014, 1406.2243.

[5]  D. Hogg,et al.  INFERRING THE GRAVITATIONAL POTENTIAL OF THE MILKY WAY WITH A FEW PRECISELY MEASURED STARS , 2014, 1405.6721.

[6]  M. Irwin,et al.  THE PAndAS FIELD OF STREAMS: STELLAR STRUCTURES IN THE MILKY WAY HALO TOWARD ANDROMEDA AND TRIANGULUM , 2014, 1403.4945.

[7]  A new fitting-function to describe the time evolution of a galaxy’s gravitational potential , 2014, 1401.5797.

[8]  J. Binney,et al.  Actions, angles and frequencies for numerically integrated orbits , 2014, 1401.3600.

[9]  J. Bovy DYNAMICAL MODELING OF TIDAL STREAMS , 2014, 1401.2985.

[10]  R. Carlberg,et al.  USING GAPS IN N-BODY TIDAL STREAMS TO PROBE MISSING SATELLITES , 2013, 1311.1710.

[11]  R. Carlberg THE DYNAMICS OF STAR STREAM GAPS , 2013, 1307.1929.

[12]  J. Binney,et al.  Stream–orbit misalignment – II. A new algorithm to constrain the Galactic potential , 2013, 1305.1937.

[13]  J. Binney,et al.  Stream–orbit misalignment – I. The dangers of orbit-fitting , 2013, 1305.1935.

[14]  A. Helmi,et al.  Action-space clustering of tidal streams to map the Galactic potential , 2013, Proceedings of the International Astronomical Union.

[15]  A. Helmi,et al.  CONSTRAINTS ON THE SHAPE OF THE MILKY WAY DARK MATTER HALO FROM THE SAGITTARIUS STREAM , 2013, 1304.4646.

[16]  Sergey E. Koposov,et al.  A STATISTICAL METHOD FOR MEASURING THE GALACTIC POTENTIAL AND TESTING GRAVITY WITH COLD TIDAL STREAMS , 2012, 1209.2126.

[17]  J. Binney Actions for axisymmetric potentials , 2012, 1207.4910.

[18]  T. Prusti The promises of Gaia , 2012 .

[19]  D. Heggie,et al.  More on the structure of tidal tails , 2011, 1111.5013.

[20]  J. Binney,et al.  Models of our Galaxy – II , 2011, 1101.0747.

[21]  D. Hogg,et al.  CLUMPY STREAMS FROM CLUMPY HALOS: DETECTING MISSING SATELLITES WITH COLD STELLAR STRUCTURES , 2010, 1012.2884.

[22]  J. Binney,et al.  The mechanics of tidal streams , 2010, 1011.3672.

[23]  A. Helmi,et al.  Assembly history and structure of galactic cold dark matter haloes , 2010, 1008.5114.

[24]  Taylor S. Chonis,et al.  STELLAR TIDAL STREAMS IN SPIRAL GALAXIES OF THE LOCAL VOLUME: A PILOT SURVEY WITH MODEST APERTURE TELESCOPES , 2010, 1003.4860.

[25]  D. Heggie,et al.  Tidal tails of star clusters , 2009, 0909.2619.

[26]  A. Helmi,et al.  On the identification of substructure in phase space using orbital frequencies , 2009, 0904.1377.

[27]  Gregory D. Martinez,et al.  Accurate masses for dispersion-supported galaxies , 2009, 0908.2995.

[28]  J. Binney,et al.  Locating the orbits delineated by tidal streams , 2009, 0907.0360.

[29]  N. Katz,et al.  The dynamics of satellite disruption in cold dark matter haloes , 2008, 0812.0009.

[30]  James Binney,et al.  Galactic Dynamics: Second Edition , 2008 .

[31]  Durham,et al.  The Aquarius Project: the subhaloes of galactic haloes , 2008, 0809.0898.

[32]  Heidelberg,et al.  A Comprehensive Maximum Likelihood Analysis of the Structural Properties of Faint Milky Way Satellites , 2008, 0805.2945.

[33]  Amina Helmi,et al.  The stellar halo of the Galaxy , 2008, 0804.0019.

[34]  J. Binney Fitting orbits to tidal streams , 2008, 0802.1485.

[35]  C. Frenk,et al.  The Aquarius Project : the subhalos of galactic halos , 2008 .

[36]  D. Lynden-Bell,et al.  Are Complex A and the Orphan stream related , 2007, astro-ph/0703397.

[37]  Princeton,et al.  The Field of Streams: Sagittarius and Its Siblings , 2006, astro-ph/0605025.

[38]  DETECTION OF A 63 COLD STELLAR STREAM IN THE SLOAN DIGITAL SKY SURVEY , 2006, astro-ph/0604332.

[39]  C. J. Grillmair,et al.  The Detection of a 45° Tidal Stream Associated with the Globular Cluster NGC 5466 , 2006, astro-ph/0602602.

[40]  H. Rix,et al.  Modeling Tidal Streams in Evolving Dark Matter Halos , 2005, astro-ph/0512507.

[41]  J. Peacock,et al.  Simulations of the formation, evolution and clustering of galaxies and quasars , 2005, Nature.

[42]  M. F. Skrutskie,et al.  A Two Micron All Sky Survey View of the Sagittarius Dwarf Galaxy. I. Morphology of the Sagittarius Core and Tidal Arms , 2003, astro-ph/0304198.

[43]  R. Ibata,et al.  A giant stream of metal-rich stars in the halo of the galaxy M31 , 2001, Nature.

[44]  M. G. Lattanzi,et al.  GAIA: Composition, formation and evolution of the Galaxy , 2001, astro-ph/0101235.

[45]  E. K. Grebel,et al.  Detection of Massive Tidal Tails around the Globular Cluster Palomar 5 with Sloan Digital Sky Survey Commissioning Data , 2000, astro-ph/0012311.

[46]  Amina Helmi,et al.  Mapping the substructure in the Galactic halo with the next generation of astrometric satellites , 2000, astro-ph/0007166.

[47]  R. Ibata,et al.  Galactic Halo Substructure in the Sloan Digital Sky Survey: The Ancient Tidal Stream from the Sagittarius Dwarf Galaxy , 2000, astro-ph/0004255.

[48]  D. York,et al.  Identification of A-colored Stars and Structure in the Halo of the Milky Way from Sloan Digital Sky Survey Commissioning Data , 2000, astro-ph/0004128.

[49]  Z. Ivezic,et al.  Candidate RR Lyrae Stars Found in Sloan Digital Sky Survey Commissioning Data , 2000, astro-ph/0004130.

[50]  A. Helmi,et al.  Building up the stellar halo of the Galaxy , 1999, astro-ph/9901102.

[51]  S. Tremaine,et al.  The geometry of phase mixing , 1998, astro-ph/9812146.

[52]  Tidal Streams as Probes of the Galactic Potential , 1998, astro-ph/9807243.

[53]  K. Johnston A Prescription for Building the Milky Way's Halo from Disrupted Satellites , 1997, astro-ph/9710007.

[54]  S. White,et al.  A Universal Density Profile from Hierarchical Clustering , 1996, astro-ph/9611107.

[55]  L. Hernquist,et al.  Fossil Signatures of Ancient Accretion Events in the Halo , 1995, astro-ph/9602060.

[56]  D. Lynden-Bell,et al.  Ghostly streams from the formation of the Galaxy’s halo , 1995 .

[57]  C. Grillmair,et al.  Globular clusters with tidal tails: deep two-color star counts , 1995, astro-ph/9502039.

[58]  M. Irwin,et al.  A dwarf satellite galaxy in Sagittarius , 1994, Nature.

[59]  J. Binney,et al.  Torus construction in potentials supporting different orbit families , 1994 .

[60]  T. Zeeuw Elliptical galaxies with separable potentials , 1985 .

[61]  A. Toomre,et al.  Galactic Bridges and Tails , 1972 .

[62]  P. O. Vandervoort The nonconstancy of the adiabatic invariants , 1961 .

[63]  H. Goldstein,et al.  Classical Mechanics , 1951, Mathematical Gazette.