A Branch and Bound Algorithm for Exact, Upper, and Lower Bounds on Treewidth

In this paper, a branch and bound algorithm for computing the treewidth of a graph is presented. The method incorporates extensions of existing results, and uses new pruning and reduction rules, based upon properties of the adopted branching strategy. We discuss how the algorithm can not only be used to obtain exact bounds for the treewidth, but also to obtain upper and/or lower bounds. Computational results of the algorithm are presented.

[1]  Hans L. Bodlaender,et al.  New Upper Bound Heuristics for Treewidth , 2005, WEA.

[2]  Arie M. C. A. Koster,et al.  Treewidth: Computational Experiments , 2001, Electron. Notes Discret. Math..

[3]  Jacques Carlier,et al.  Heuristic and metaheuristic methods for computing graph treewidth , 2004, RAIRO Oper. Res..

[4]  Arie M. C. A. Koster,et al.  Contraction and Treewidth Lower Bounds , 2004, ESA.

[5]  Hans L. Bodlaender,et al.  A linear time algorithm for finding tree-decompositions of small treewidth , 1993, STOC.

[6]  Ton Kloks,et al.  Efficient and Constructive Algorithms for the Pathwidth and Treewidth of Graphs , 1993, J. Algorithms.

[7]  Stefan Arnborg,et al.  Linear time algorithms for NP-hard problems restricted to partial k-trees , 1989, Discret. Appl. Math..

[8]  Arie M. C. A. Koster,et al.  PREPROCESSING RULES FOR TRIANGULATION OF PROBABILISTIC NETWORKS * , 2005, Comput. Intell..

[9]  Hans L. Bodlaender,et al.  Discovering Treewidth , 2005, SOFSEM.

[10]  Vibhav Gogate,et al.  A Complete Anytime Algorithm for Treewidth , 2004, UAI.

[11]  Eyal Amir,et al.  Efficient Approximation for Triangulation of Minimum Treewidth , 2001, UAI.

[12]  Dan Geiger,et al.  A sufficiently fast algorithm for finding close to optimal clique trees , 2001, Artif. Intell..

[13]  Derek G. Corneil,et al.  Complexity of finding embeddings in a k -tree , 1987 .

[14]  Siddharthan Ramachandramurthi,et al.  The Structure and Number of Obstructions to Treewidth , 1997, SIAM J. Discret. Math..

[15]  Hans L. Bodlaender,et al.  A Tourist Guide through Treewidth , 1993, Acta Cybern..

[16]  Stefan Arnborg,et al.  Efficient algorithms for combinatorial problems on graphs with bounded decomposability — A survey , 1985, BIT.

[17]  Detlef Seese,et al.  Easy Problems for Tree-Decomposable Graphs , 1991, J. Algorithms.

[18]  Arie M. C. A. Koster,et al.  Safe Reduction Rules for Weighted Treewidth , 2002, Algorithmica.

[19]  Hans L. Bodlaender,et al.  Necessary Edges in k-Chordalisations of Graphs , 2003, J. Comb. Optim..

[20]  Linda C. van der Gaag,et al.  Pre-processing for Triangulation of Probabilistic Networks , 2001, UAI.

[21]  Hans L. Bodlaender,et al.  Safe Reduction Rules for Weighted Treewidth , 2002, WG.