MR Diffusion-Based Inference of a Fiber Bundle Model from a Population of Subjects

This paper proposes a method to infer a high level model of the white matter organization from a population of subjects using MR diffusion imaging. This method takes as input for each subject a set of trajectories stemming from any tracking algorithm. Then the inference results from two nested clustering stages. The first clustering converts each individual set of trajectories into a set of bundles supposed to represent large white matter pathways. The second clustering matches these bundles across subjects in order to provide a list of candidates for the bundle model. The method is applied on a population of eleven subjects and leads to the inference of 17 such candidates.

[1]  Gordon L. Kindlmann,et al.  Tensorlines: advection-diffusion based propagation through diffusion tensor fields , 1999, Proceedings Visualization '99 (Cat. No.99CB37067).

[2]  Guido Gerig,et al.  A Statistical Shape Model of Individual Fiber Tracts Extracted from Diffusion Tensor MRI , 2004, MICCAI.

[3]  Jiří Matas,et al.  Computer Vision - ECCV 2004 , 2004, Lecture Notes in Computer Science.

[4]  Daniel C. Alexander,et al.  Probabilistic Monte Carlo Based Mapping of Cerebral Connections Utilising Whole-Brain Crossing Fibre Information , 2003, IPMI.

[5]  Lawrence H. Staib,et al.  Estimation of Anatomical Connectivity by Anisotropic Front Propagation and Diffusion Tensor Imaging , 2004, MICCAI.

[6]  Jean-Francois Mangin,et al.  Automatic recognition of cortical sulci of the human brain using a congregation of neural networks , 2002, Medical Image Anal..

[7]  D. Le Bihan,et al.  Diffusion tensor imaging: Concepts and applications , 2001, Journal of magnetic resonance imaging : JMRI.

[8]  D. Tuch Diffusion MRI of complex tissue structure , 2002 .

[9]  Pierre Hellier,et al.  Level Set Methods in an EM Framework for Shape Classification and Estimation , 2004, International Conference on Medical Image Computing and Computer-Assisted Intervention.

[10]  Ron Kikinis,et al.  Medical Image Computing and Computer-Assisted Intervention — MICCAI 2002 , 2002, Lecture Notes in Computer Science.

[11]  Rachid Deriche,et al.  Inferring White Matter Geometry from Di.usion Tensor MRI: Application to Connectivity Mapping , 2004, ECCV.

[12]  Carl-Fredrik Westin,et al.  Clustering Fiber Traces Using Normalized Cuts , 2004, MICCAI.

[13]  John H. Gilmore,et al.  Quantitative Analysis of White Matter Fiber Properties along Geodesic Paths , 2003, MICCAI.

[14]  Carl-Fredrik Westin,et al.  Regularized Stochastic White Matter Tractography Using Diffusion Tensor MRI , 2002, MICCAI.

[15]  Timothy Edward John Behrens,et al.  Characterization and propagation of uncertainty in diffusion‐weighted MR imaging , 2003, Magnetic resonance in medicine.

[16]  P. Basser,et al.  In vivo fiber tractography using DT‐MRI data , 2000, Magnetic resonance in medicine.

[17]  D. Shen,et al.  Spatial normalization of diffusion tensor fields , 2003, Magnetic resonance in medicine.

[18]  C. Poupon,et al.  Regularization of Diffusion-Based Direction Maps for the Tracking of Brain White Matter Fascicles , 2000, NeuroImage.

[19]  J. Dejerine Anatomie des centres nerveux , 1895 .

[20]  E. Ludwig,et al.  Atlas cerebri humani , 1956 .

[21]  P. V. van Zijl,et al.  Three‐dimensional tracking of axonal projections in the brain by magnetic resonance imaging , 1999, Annals of neurology.

[22]  M. Raichle,et al.  Tracking neuronal fiber pathways in the living human brain. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[23]  Terry M. Peters,et al.  Medical Image Computing and Computer-Assisted Intervention - MICCAI 2003 , 2003, Lecture Notes in Computer Science.

[24]  Derek K. Jones,et al.  Spatial Normalization and Averaging of Diffusion Tensor MRI Data Sets , 2002, NeuroImage.