Blockwise Adaptivity for Time Dependent Problems Based on Coarse Scale Adjoint Solutions

We describe and test an adaptive algorithm for evolution problems that employs a sequence of “blocks” consisting of fixed, though nonuniform, space meshes. This approach offers the advantages of adaptive mesh refinement but with reduced overhead costs associated with load balancing, remeshing, matrix reassembly, and the solution of adjoint problems used to estimate discretization error and the effects of mesh changes. A major issue with a block adaptive approach is determining block discretizations from coarse scale solution information that achieve the desired accuracy. We describe several strategies for achieving this goal using adjoint-based a posteriori error estimates, and we demonstrate the behavior of the proposed algorithms as well as several technical issues in a set of examples.

[1]  G. D. Byrne,et al.  VODE: a variable-coefficient ODE solver , 1989 .

[2]  Jens Lang,et al.  A finite element method adaptive in space and time for nonlinear reaction-diffusion systems , 1992, IMPACT Comput. Sci. Eng..

[3]  D. Estep A posteriori error bounds and global error control for approximation of ordinary differential equations , 1995 .

[4]  Michael Warner,et al.  Computational Error Estimation and Adaptive Error Control for a Finite Element Solution of Launch Vehicle Trajectory Problems , 1999, SIAM J. Sci. Comput..

[5]  Harold C. Edwards,et al.  Parallel adaptive application development using the SIERRA framework , 2001 .

[6]  Rainald Löhner,et al.  Adaptive remeshing for transient problems , 1989 .

[7]  Hindmarsh ODE solvers for use with the method of lines. [Brief descriptions of LSODE and LSODI for CDC 7600] , 1980 .

[8]  Joseph E. Flaherty,et al.  Adaptive local overlapping grid methods for parabolic systems in two space dimensions , 1992 .

[9]  Ivo Babuška,et al.  Basic principles of feedback and adaptive approaches in the finite element method , 1986 .

[10]  William F. Mitchell,et al.  A comparison of adaptive refinement techniques for elliptic problems , 1989, TOMS.

[11]  Maurizio Paolini,et al.  Towards a Unified Approach for the Adaptive Solution of Evolution Phase Changes , 1993 .

[12]  T. Strouboulis,et al.  A posteriori estimation and adaptive control of the error in the quantity of interest. Part I: A posteriori estimation of the error in the von Mises stress and the stress intensity factor , 2000 .

[13]  M. Rivara Algorithms for refining triangular grids suitable for adaptive and multigrid techniques , 1984 .

[14]  E. Hairer,et al.  Solving Ordinary Differential Equations II , 2010 .

[15]  J. Tinsley Oden,et al.  State-Of-The-Art Surveys on Computational Mechanics , 1989 .

[16]  A. Schmidt,et al.  Adaptive Solution of Phase Change Problems Over Unstructured Tetrahedral Meshes , 1999 .

[17]  J. Verwer,et al.  Numerical solution of time-dependent advection-diffusion-reaction equations , 2003 .

[18]  Rüdiger Verfürth,et al.  A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .

[19]  Toshio Kawai,et al.  Optimal Time Step Control for the Numerical Solution of Ordinary Differential Equations , 1996 .

[20]  P. Henrici Discrete Variable Methods in Ordinary Differential Equations , 1962 .

[21]  Jean-François Remacle,et al.  Parallel Algorithm Oriented Mesh Database , 2002, Engineering with Computers.

[22]  Donald Estep,et al.  An analysis of numerical approximations of metastable solutions of the bistable equation , 1994 .

[23]  J. Verwer,et al.  Stability of Runge-Kutta Methods for Stiff Nonlinear Differential Equations , 1984 .

[24]  D. Estep,et al.  Global error control for the continuous Galerkin finite element method for ordinary differential equations , 1994 .

[25]  Randolph E. Bank,et al.  An adaptive, multi-level method for elliptic boundary value problems , 2005, Computing.

[26]  J. Tinsley Oden,et al.  Adaptive Finite Element Methods for Problems in Solid and Fluid Mechanics , 1988 .

[27]  R. Russell,et al.  Adaptive Mesh Selection Strategies for Solving Boundary Value Problems , 1978 .

[28]  Claes Johnson,et al.  Introduction to Adaptive Methods for Differential Equations , 1995, Acta Numerica.

[29]  Mark S. Shephard,et al.  3D anisotropic mesh adaptation by mesh modification , 2005 .

[30]  T. E. Hull,et al.  Comparing Numerical Methods for Ordinary Differential Equations , 1972 .

[31]  J. Flaherty,et al.  An Adaptive Finite Element Method for Initial-Boundary Value Problems for Partial Differential Equations , 1982 .

[32]  Ralf Hartmann,et al.  Goal-oriented a posteriori error estimation for compressible fluid flows , 2003 .

[33]  Hans J. Stetter,et al.  Local Estimation of the Global Discretization Error , 1971 .

[34]  Thomas J. R. Hughes,et al.  Explicit residual-based a posteriori error estimation for finite element discretizations of the Helmholtz equation: Computation of the constant and new measures of error estimator quality , 1996 .

[35]  Rolf Rannacher,et al.  Adaptive Finite Element Methods for Optimal Control of Partial Differential Equations: Basic Concept , 2000, SIAM J. Control. Optim..

[36]  L. Shampine Local error control in codes for ordinary differential equations , 1977 .

[37]  Claes Johnson,et al.  Computational Differential Equations , 1996 .

[38]  M. Giles,et al.  Adjoint methods for PDEs: a posteriori error analysis and postprocessing by duality , 2002, Acta Numerica.

[39]  Endre Süli,et al.  Adaptive finite element methods for differential equations , 2003, Lectures in mathematics.

[40]  Claes Johnson,et al.  Adaptive finite element methods in computational mechanics , 1992 .

[41]  I. Babuška,et al.  The finite element method for parabolic equations , 1982 .

[42]  Wayne H. Enright,et al.  Robust and reliable defect control for Runge-Kutta methods , 2007, TOMS.

[43]  A. Hindmarsh,et al.  CVODE, a stiff/nonstiff ODE solver in C , 1996 .

[44]  T. Steinmetz,et al.  Error control schemes for adaptive time integration of magnetodynamic systems with variable spatial mesh resolution , 2007 .

[45]  Kjell Gustafsson,et al.  Control theoretic techniques for stepsize selection in explicit Runge-Kutta methods , 1991, TOMS.

[46]  Graham F. Carey,et al.  GRADING FUNCTIONS AND MESH REDISTRIBUTION , 1985 .

[47]  W. H. Enright A new error-control for initial value solvers , 1989 .

[48]  Leszek Demkowicz,et al.  Adaptive methods for problems in solid and fluid mechanics , 1986 .

[49]  I. Babuska,et al.  The finite element method and its reliability , 2001 .

[50]  T. Dupont Mesh modification for evolution equations , 1982 .

[51]  Desmond J. Higham,et al.  Robust defect control with Runge-Kutta schemes , 1989 .

[52]  Ivo Babuška,et al.  A posteriori error analysis and adaptive processes in the finite element method: Part I—error analysis , 1983 .

[53]  Germund Dahlquist On the control of the global error in stiff initial value problems , 1982 .

[54]  Rolf Rannacher,et al.  A Feed-Back Approach to Error Control in Finite Element Methods: Basic Analysis and Examples , 1996 .

[55]  Michael J. Holst,et al.  Adaptive Numerical Treatment of Elliptic Systems on Manifolds , 2001, Adv. Comput. Math..

[56]  Donald Estep,et al.  ACCURATE PARALLEL INTEGRATION OF LARGE SPARSE SYSTEMS OF DIFFERENTIAL EQUATIONS , 1996 .

[57]  L. Shampine,et al.  Computer solution of ordinary differential equations : the initial value problem , 1975 .

[58]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis , 2000 .

[59]  H. J. Stetter,et al.  Global error estimation in ODE-solvers , 1978 .

[60]  C. W. Gear,et al.  Numerical initial value problem~ in ordinary differential eqttations , 1971 .

[61]  Giuseppe Savare',et al.  A posteriori error estimates for variable time-step discretizations of nonlinear evolution equations † , 2000 .

[62]  R. Skeel Thirteen ways to estimate global error , 1986 .

[63]  O. C. Zienkiewicz,et al.  Adaptivity and mesh generation , 1991 .

[64]  E. Bänsch An adaptive finite-element strategy for the three-dimensional time-dependent Navier-Stokes equations , 1991 .

[65]  Graham F. Carey,et al.  Computational grids , 1997 .

[66]  J. G. Verwer,et al.  ESTIMATING THE GLOBAL ERROR OF RUNGE-KUTTA APPROXIMATIONS FOR ORDINARY DIFFERENTIAL EQUATIONS , 1982 .

[67]  Linda R. Petzold,et al.  A Posteriori Error Estimation and Global Error Control for Ordinary Differential Equations by the Adjoint Method , 2005, SIAM J. Sci. Comput..

[68]  Duane R. Mikulencak,et al.  Accounting for stability: a posteriori error estimates based on residuals and variational analysis , 2001 .

[69]  J. Lang Two-dimensional fully adaptive solutions of reaction-diffusion equations , 1995 .

[70]  Kjell Gustafsson,et al.  Control Strategies for the Iterative Solution of Nonlinear Equations in ODE Solvers , 1997, SIAM J. Sci. Comput..

[71]  Desmond J. Higham,et al.  Global error estimation with adaptive explicit Runge-Kutta methods , 1996 .

[72]  J. Oden,et al.  Toward a universal h - p adaptive finite element strategy: Part 2 , 1989 .

[73]  Desmond J. Higham,et al.  The tolerance proportionality of adaptive ODE solvers , 1993 .

[74]  P. Colella,et al.  Local adaptive mesh refinement for shock hydrodynamics , 1989 .

[75]  J. A. White,et al.  On Selection of Equidistributing Meshes for Two-Point Boundary-Value Problems , 1979 .

[76]  Raúl Tempone,et al.  Convergence rates for adaptive approximation of ordinary differential equations , 2003, Numerische Mathematik.

[77]  Jack K. Hale,et al.  Slow-motion manifolds, dormant instability, and singular perturbations , 1989 .

[78]  Rolf Rannacher,et al.  An optimal control approach to a posteriori error estimation in finite element methods , 2001, Acta Numerica.

[79]  Claes Johnson,et al.  Adaptive error control for multigrid finite element , 1995, Computing.

[80]  Roy D. Williams,et al.  Estimating the Error of Numerical Solutions of Systems of Reaction-Diffusion Equations , 2000 .

[81]  Martin Berzins,et al.  3D Parallel Mesh Adaptivity: Data-Structures and Algorithms , 1997, PPSC.

[82]  D WilliamsRoy Performance of dynamic load balancing algorithms for unstructured mesh calculations , 1991 .

[83]  J E Flaherty,et al.  Adaptive Refinement Methods for Nonlinear Parabolic Partial Differential Equations. , 1984 .

[84]  Ricardo H. Nochetto,et al.  Data Oscillation and Convergence of Adaptive FEM , 2000, SIAM J. Numer. Anal..

[85]  Claes Johnson Error Estimates and Adaptive Time-Step Control for a Class of One-Step Methods for Stiff Ordinary Differential Equations , 1988 .

[86]  Victor Pereyra,et al.  Mesh selection for discrete solution of boundary problems in ordinary differential equations , 1974 .

[87]  Ewa Weinmüller,et al.  On the error control in ODE solvers with local extrapolation , 2005, Computing.

[88]  J. Brandts [Review of: W. Hundsdorfer, J.G. Verwer (2003) Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations] , 2006 .

[89]  M. Giles On adjoint equations for error analysis and optimal grid adaptation in CFD , 1997 .

[90]  G. Carey,et al.  Local boundary value problems for the error in FE approximation of non‐linear diffusion systems , 2008 .

[91]  Ivo Babuška,et al.  The post-processing approach in the finite element method—part 1: Calculation of displacements, stresses and other higher derivatives of the displacements , 1984 .

[92]  P. Hartman Ordinary Differential Equations , 1965 .

[93]  Luca Dieci,et al.  Some Stability Aspects of Schemes for the Adaptive Integration of Siff Initial Value Problems , 1991, SIAM J. Sci. Comput..

[94]  Rolf Rannacher,et al.  Adaptive finite element methods for differntial equations , 2003 .

[95]  O. Zienkiewicz,et al.  Finite element Euler computations in three dimensions , 1988 .

[96]  O. C. Zienkiewicz,et al.  Adaptive techniques in the finite element method , 1988 .

[97]  J. D. Teresco,et al.  Parallel structures and dynamic load balancing for adaptive finite element computation , 1998 .

[98]  O. C. Zienkiewicz,et al.  Adaptive remeshing for compressible flow computations , 1987 .

[99]  Vidar Thomée,et al.  An a posteriori error estimate and adaptive timestep control for a backward Euler discretization of a parabolic problem , 1990 .

[100]  Ivo Babuška,et al.  Analysis of optimal finite-element meshes in ¹ , 1979 .

[101]  Michael J. Holst,et al.  Generalized Green's Functions and the Effective Domain of Influence , 2005, SIAM J. Sci. Comput..

[102]  C. Felippa Optimization of finite element grids by direct energy search , 1976 .

[103]  Graham F. Carey,et al.  A mesh-refinement scheme for finite element computations , 1976 .

[104]  Kenneth Eriksson,et al.  Adaptive finite element methods for parabolic problems. I.: a linear model problem , 1991 .

[105]  Timothy J. Barth,et al.  A Posteriori Error Estimation and Mesh Adaptivity for Finite Volume and Finite Element Methods , 2005 .

[106]  Richard E. Ewing,et al.  Adaptive techniques for time-dependent problems , 1992 .

[107]  Jens Lang,et al.  On Global Error Estimation and Control for Initial Value Problems , 2007, SIAM J. Sci. Comput..

[108]  R. Bank,et al.  Some Refinement Algorithms And Data Structures For Regular Local Mesh Refinement , 1983 .

[109]  Lawrence F. Shampine,et al.  A User’s View of Solving Stiff Ordinary Differential Equations , 1979 .

[110]  Peter K. Moore,et al.  An Adaptive Finite Element Method for Parabolic Differential Systems: Some Algorithmic Considerations in Solving in Three Space Dimensions , 1999, SIAM J. Sci. Comput..

[111]  F. Krogh,et al.  Solving Ordinary Differential Equations , 2019, Programming for Computations - Python.

[112]  Marsha Berger Data structures for adaptive mesh refinement , 1983 .