Blockwise Adaptivity for Time Dependent Problems Based on Coarse Scale Adjoint Solutions
暂无分享,去创建一个
Donald Estep | Mats G. Larson | Simon Tavener | August Johansson | D. Estep | M. Larson | S. Tavener | V. Carey | A. Johansson | V. Carey
[1] G. D. Byrne,et al. VODE: a variable-coefficient ODE solver , 1989 .
[2] Jens Lang,et al. A finite element method adaptive in space and time for nonlinear reaction-diffusion systems , 1992, IMPACT Comput. Sci. Eng..
[3] D. Estep. A posteriori error bounds and global error control for approximation of ordinary differential equations , 1995 .
[4] Michael Warner,et al. Computational Error Estimation and Adaptive Error Control for a Finite Element Solution of Launch Vehicle Trajectory Problems , 1999, SIAM J. Sci. Comput..
[5] Harold C. Edwards,et al. Parallel adaptive application development using the SIERRA framework , 2001 .
[6] Rainald Löhner,et al. Adaptive remeshing for transient problems , 1989 .
[7] Hindmarsh. ODE solvers for use with the method of lines. [Brief descriptions of LSODE and LSODI for CDC 7600] , 1980 .
[8] Joseph E. Flaherty,et al. Adaptive local overlapping grid methods for parabolic systems in two space dimensions , 1992 .
[9] Ivo Babuška,et al. Basic principles of feedback and adaptive approaches in the finite element method , 1986 .
[10] William F. Mitchell,et al. A comparison of adaptive refinement techniques for elliptic problems , 1989, TOMS.
[11] Maurizio Paolini,et al. Towards a Unified Approach for the Adaptive Solution of Evolution Phase Changes , 1993 .
[12] T. Strouboulis,et al. A posteriori estimation and adaptive control of the error in the quantity of interest. Part I: A posteriori estimation of the error in the von Mises stress and the stress intensity factor , 2000 .
[13] M. Rivara. Algorithms for refining triangular grids suitable for adaptive and multigrid techniques , 1984 .
[14] E. Hairer,et al. Solving Ordinary Differential Equations II , 2010 .
[15] J. Tinsley Oden,et al. State-Of-The-Art Surveys on Computational Mechanics , 1989 .
[16] A. Schmidt,et al. Adaptive Solution of Phase Change Problems Over Unstructured Tetrahedral Meshes , 1999 .
[17] J. Verwer,et al. Numerical solution of time-dependent advection-diffusion-reaction equations , 2003 .
[18] Rüdiger Verfürth,et al. A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .
[19] Toshio Kawai,et al. Optimal Time Step Control for the Numerical Solution of Ordinary Differential Equations , 1996 .
[20] P. Henrici. Discrete Variable Methods in Ordinary Differential Equations , 1962 .
[21] Jean-François Remacle,et al. Parallel Algorithm Oriented Mesh Database , 2002, Engineering with Computers.
[22] Donald Estep,et al. An analysis of numerical approximations of metastable solutions of the bistable equation , 1994 .
[23] J. Verwer,et al. Stability of Runge-Kutta Methods for Stiff Nonlinear Differential Equations , 1984 .
[24] D. Estep,et al. Global error control for the continuous Galerkin finite element method for ordinary differential equations , 1994 .
[25] Randolph E. Bank,et al. An adaptive, multi-level method for elliptic boundary value problems , 2005, Computing.
[26] J. Tinsley Oden,et al. Adaptive Finite Element Methods for Problems in Solid and Fluid Mechanics , 1988 .
[27] R. Russell,et al. Adaptive Mesh Selection Strategies for Solving Boundary Value Problems , 1978 .
[28] Claes Johnson,et al. Introduction to Adaptive Methods for Differential Equations , 1995, Acta Numerica.
[29] Mark S. Shephard,et al. 3D anisotropic mesh adaptation by mesh modification , 2005 .
[30] T. E. Hull,et al. Comparing Numerical Methods for Ordinary Differential Equations , 1972 .
[31] J. Flaherty,et al. An Adaptive Finite Element Method for Initial-Boundary Value Problems for Partial Differential Equations , 1982 .
[32] Ralf Hartmann,et al. Goal-oriented a posteriori error estimation for compressible fluid flows , 2003 .
[33] Hans J. Stetter,et al. Local Estimation of the Global Discretization Error , 1971 .
[34] Thomas J. R. Hughes,et al. Explicit residual-based a posteriori error estimation for finite element discretizations of the Helmholtz equation: Computation of the constant and new measures of error estimator quality , 1996 .
[35] Rolf Rannacher,et al. Adaptive Finite Element Methods for Optimal Control of Partial Differential Equations: Basic Concept , 2000, SIAM J. Control. Optim..
[36] L. Shampine. Local error control in codes for ordinary differential equations , 1977 .
[37] Claes Johnson,et al. Computational Differential Equations , 1996 .
[38] M. Giles,et al. Adjoint methods for PDEs: a posteriori error analysis and postprocessing by duality , 2002, Acta Numerica.
[39] Endre Süli,et al. Adaptive finite element methods for differential equations , 2003, Lectures in mathematics.
[40] Claes Johnson,et al. Adaptive finite element methods in computational mechanics , 1992 .
[41] I. Babuška,et al. The finite element method for parabolic equations , 1982 .
[42] Wayne H. Enright,et al. Robust and reliable defect control for Runge-Kutta methods , 2007, TOMS.
[43] A. Hindmarsh,et al. CVODE, a stiff/nonstiff ODE solver in C , 1996 .
[44] T. Steinmetz,et al. Error control schemes for adaptive time integration of magnetodynamic systems with variable spatial mesh resolution , 2007 .
[45] Kjell Gustafsson,et al. Control theoretic techniques for stepsize selection in explicit Runge-Kutta methods , 1991, TOMS.
[46] Graham F. Carey,et al. GRADING FUNCTIONS AND MESH REDISTRIBUTION , 1985 .
[47] W. H. Enright. A new error-control for initial value solvers , 1989 .
[48] Leszek Demkowicz,et al. Adaptive methods for problems in solid and fluid mechanics , 1986 .
[49] I. Babuska,et al. The finite element method and its reliability , 2001 .
[50] T. Dupont. Mesh modification for evolution equations , 1982 .
[51] Desmond J. Higham,et al. Robust defect control with Runge-Kutta schemes , 1989 .
[52] Ivo Babuška,et al. A posteriori error analysis and adaptive processes in the finite element method: Part I—error analysis , 1983 .
[53] Germund Dahlquist. On the control of the global error in stiff initial value problems , 1982 .
[54] Rolf Rannacher,et al. A Feed-Back Approach to Error Control in Finite Element Methods: Basic Analysis and Examples , 1996 .
[55] Michael J. Holst,et al. Adaptive Numerical Treatment of Elliptic Systems on Manifolds , 2001, Adv. Comput. Math..
[56] Donald Estep,et al. ACCURATE PARALLEL INTEGRATION OF LARGE SPARSE SYSTEMS OF DIFFERENTIAL EQUATIONS , 1996 .
[57] L. Shampine,et al. Computer solution of ordinary differential equations : the initial value problem , 1975 .
[58] J. Oden,et al. A Posteriori Error Estimation in Finite Element Analysis , 2000 .
[59] H. J. Stetter,et al. Global error estimation in ODE-solvers , 1978 .
[60] C. W. Gear,et al. Numerical initial value problem~ in ordinary differential eqttations , 1971 .
[61] Giuseppe Savare',et al. A posteriori error estimates for variable time-step discretizations of nonlinear evolution equations † , 2000 .
[62] R. Skeel. Thirteen ways to estimate global error , 1986 .
[63] O. C. Zienkiewicz,et al. Adaptivity and mesh generation , 1991 .
[64] E. Bänsch. An adaptive finite-element strategy for the three-dimensional time-dependent Navier-Stokes equations , 1991 .
[65] Graham F. Carey,et al. Computational grids , 1997 .
[66] J. G. Verwer,et al. ESTIMATING THE GLOBAL ERROR OF RUNGE-KUTTA APPROXIMATIONS FOR ORDINARY DIFFERENTIAL EQUATIONS , 1982 .
[67] Linda R. Petzold,et al. A Posteriori Error Estimation and Global Error Control for Ordinary Differential Equations by the Adjoint Method , 2005, SIAM J. Sci. Comput..
[68] Duane R. Mikulencak,et al. Accounting for stability: a posteriori error estimates based on residuals and variational analysis , 2001 .
[69] J. Lang. Two-dimensional fully adaptive solutions of reaction-diffusion equations , 1995 .
[70] Kjell Gustafsson,et al. Control Strategies for the Iterative Solution of Nonlinear Equations in ODE Solvers , 1997, SIAM J. Sci. Comput..
[71] Desmond J. Higham,et al. Global error estimation with adaptive explicit Runge-Kutta methods , 1996 .
[72] J. Oden,et al. Toward a universal h - p adaptive finite element strategy: Part 2 , 1989 .
[73] Desmond J. Higham,et al. The tolerance proportionality of adaptive ODE solvers , 1993 .
[74] P. Colella,et al. Local adaptive mesh refinement for shock hydrodynamics , 1989 .
[75] J. A. White,et al. On Selection of Equidistributing Meshes for Two-Point Boundary-Value Problems , 1979 .
[76] Raúl Tempone,et al. Convergence rates for adaptive approximation of ordinary differential equations , 2003, Numerische Mathematik.
[77] Jack K. Hale,et al. Slow-motion manifolds, dormant instability, and singular perturbations , 1989 .
[78] Rolf Rannacher,et al. An optimal control approach to a posteriori error estimation in finite element methods , 2001, Acta Numerica.
[79] Claes Johnson,et al. Adaptive error control for multigrid finite element , 1995, Computing.
[80] Roy D. Williams,et al. Estimating the Error of Numerical Solutions of Systems of Reaction-Diffusion Equations , 2000 .
[81] Martin Berzins,et al. 3D Parallel Mesh Adaptivity: Data-Structures and Algorithms , 1997, PPSC.
[82] D WilliamsRoy. Performance of dynamic load balancing algorithms for unstructured mesh calculations , 1991 .
[83] J E Flaherty,et al. Adaptive Refinement Methods for Nonlinear Parabolic Partial Differential Equations. , 1984 .
[84] Ricardo H. Nochetto,et al. Data Oscillation and Convergence of Adaptive FEM , 2000, SIAM J. Numer. Anal..
[85] Claes Johnson. Error Estimates and Adaptive Time-Step Control for a Class of One-Step Methods for Stiff Ordinary Differential Equations , 1988 .
[86] Victor Pereyra,et al. Mesh selection for discrete solution of boundary problems in ordinary differential equations , 1974 .
[87] Ewa Weinmüller,et al. On the error control in ODE solvers with local extrapolation , 2005, Computing.
[88] J. Brandts. [Review of: W. Hundsdorfer, J.G. Verwer (2003) Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations] , 2006 .
[89] M. Giles. On adjoint equations for error analysis and optimal grid adaptation in CFD , 1997 .
[90] G. Carey,et al. Local boundary value problems for the error in FE approximation of non‐linear diffusion systems , 2008 .
[91] Ivo Babuška,et al. The post-processing approach in the finite element method—part 1: Calculation of displacements, stresses and other higher derivatives of the displacements , 1984 .
[92] P. Hartman. Ordinary Differential Equations , 1965 .
[93] Luca Dieci,et al. Some Stability Aspects of Schemes for the Adaptive Integration of Siff Initial Value Problems , 1991, SIAM J. Sci. Comput..
[94] Rolf Rannacher,et al. Adaptive finite element methods for differntial equations , 2003 .
[95] O. Zienkiewicz,et al. Finite element Euler computations in three dimensions , 1988 .
[96] O. C. Zienkiewicz,et al. Adaptive techniques in the finite element method , 1988 .
[97] J. D. Teresco,et al. Parallel structures and dynamic load balancing for adaptive finite element computation , 1998 .
[98] O. C. Zienkiewicz,et al. Adaptive remeshing for compressible flow computations , 1987 .
[99] Vidar Thomée,et al. An a posteriori error estimate and adaptive timestep control for a backward Euler discretization of a parabolic problem , 1990 .
[100] Ivo Babuška,et al. Analysis of optimal finite-element meshes in ¹ , 1979 .
[101] Michael J. Holst,et al. Generalized Green's Functions and the Effective Domain of Influence , 2005, SIAM J. Sci. Comput..
[102] C. Felippa. Optimization of finite element grids by direct energy search , 1976 .
[103] Graham F. Carey,et al. A mesh-refinement scheme for finite element computations , 1976 .
[104] Kenneth Eriksson,et al. Adaptive finite element methods for parabolic problems. I.: a linear model problem , 1991 .
[105] Timothy J. Barth,et al. A Posteriori Error Estimation and Mesh Adaptivity for Finite Volume and Finite Element Methods , 2005 .
[106] Richard E. Ewing,et al. Adaptive techniques for time-dependent problems , 1992 .
[107] Jens Lang,et al. On Global Error Estimation and Control for Initial Value Problems , 2007, SIAM J. Sci. Comput..
[108] R. Bank,et al. Some Refinement Algorithms And Data Structures For Regular Local Mesh Refinement , 1983 .
[109] Lawrence F. Shampine,et al. A User’s View of Solving Stiff Ordinary Differential Equations , 1979 .
[110] Peter K. Moore,et al. An Adaptive Finite Element Method for Parabolic Differential Systems: Some Algorithmic Considerations in Solving in Three Space Dimensions , 1999, SIAM J. Sci. Comput..
[111] F. Krogh,et al. Solving Ordinary Differential Equations , 2019, Programming for Computations - Python.
[112] Marsha Berger. Data structures for adaptive mesh refinement , 1983 .