Exact moderate and large deviations for linear random fields

By extending the methods in Peligrad et al. (2014a, b), we establish exact moderate and large deviation asymptotics for linear random fields with independent innovations. These results are useful for studying nonparametric regression with random field errors and strong limit theorems.

[1]  M. Bhaskara Rao,et al.  Large deviations for moving average processes , 1995 .

[2]  Marc Hallin,et al.  Kernel density estimation for spatial processes: the L 1 theory , 2004 .

[3]  Asymptotics for linear random fields , 2001 .

[4]  M. E. Machkouri Nonparametric Regression Estimation for Random Fields in a Fixed-Design , 2005, math/0502091.

[5]  W. Wu,et al.  On linear processes with dependent innovations , 2005 .

[6]  Deli Li,et al.  A supplement to the Davis-Gut law , 2007 .

[7]  Fixed design regression for negatively associated random fields , 2009 .

[8]  Kernel density estimation for stationary random fields , 2011, 1109.2694.

[9]  M. Woodroofe,et al.  A Central Limit Theorem For Linear Random Fields , 2010, 1007.1490.

[10]  R. Stoica,et al.  Asymptotic normality of kernel estimates in a regression model for random fields , 2009, 0907.1519.

[11]  On probabilities of moderate deviations of sums for independent random variables , 2005 .

[12]  Andrew Odlyzko,et al.  Large deviations of sums of independent random variables , 1988 .

[13]  D. Li CONVERGENCE RATES OF LAW OF ITERATED LOGARITHM FOR B-VALUED RANDOM VARIABLES , 1991 .

[14]  Marc Hallin,et al.  Kernel density estimation for spatial processes: the L1 theory , 2004 .

[15]  Gennady Samorodnitsky,et al.  The effect of memory on functional large deviations of infinite moving average processes , 2007, 0708.0865.

[16]  P. Chen,et al.  Convergence rates for probabilities of moderate deviations for moving average processes , 2008 .

[17]  T. Mikosch,et al.  Precise large deviations for dependent regularly varying sequences , 2012, 1206.1395.

[18]  L. Tran Kernel density estimation on random fields , 1990 .

[19]  Arnaud Guillin,et al.  Moderate deviations of empirical periodogram and non-linear functionals of moving average processes , 2006 .

[20]  M. Hallin,et al.  Local linear spatial regression , 2004, math/0508597.

[21]  W. Wu,et al.  MODERATE DEVIATIONS FOR STATIONARY PROCESSES , 2008 .

[22]  E. Seneta Regularly varying functions , 1976 .

[23]  Wavelet regression with long memory infinite moving average errors , 2009 .

[24]  E. Giné,et al.  Decoupling: From Dependence to Independence , 1998 .

[25]  Gennady Samorodnitsky,et al.  The supremum of a negative drift random walk with dependent heavy-tailed steps , 2000 .

[26]  Richard A. Davis,et al.  Point Process and Partial Sum Convergence for Weakly Dependent Random Variables with Infinite Variance , 1995 .

[27]  Allan Gut,et al.  Convergence Rates for Probabilities of Moderate Deviations for Sums of Random Variables with Multidimensional Indices , 1980 .

[28]  Oleg Klesov Limit Theorems for Multi-Indexed Sums of Random Variables , 2014 .

[29]  V. Paulauskas,et al.  Remarks on the SLLN for linear random fields , 2010 .

[30]  Yizao Wang,et al.  On the asymptotic normality of kernel density estimators for causal linear random fields , 2014, J. Multivar. Anal..

[31]  N. H. Bingham,et al.  Regular variation in more general settings , 1987 .

[32]  M. Peligrad,et al.  Exact Moderate and Large Deviations for Linear Processes , 2011, 1111.0537.

[33]  A. Nagaev Integral Limit Theorems Taking Large Deviations Into Account When Cramér’s Condition Does Not Hold. II , 1969 .

[34]  A. Guillin,et al.  Large and moderate deviations for moving average processes , 2001 .

[35]  Donatas Surgailis,et al.  Zones of attraction of self-similar multiple integrals , 1982 .

[36]  Vygantas Paulauskas,et al.  On Beveridge-Nelson decomposition and limit theorems for linear random fields , 2010, J. Multivar. Anal..

[37]  James Avery Davis,et al.  Convergence rates for the law of the iterated logarithm and for probabilities of moderate deviations , 1968 .