Experimental Pauli-frame randomization on a superconducting qubit

One proposal to address coherent and non-Markovian errors in quantum computing systems is to randomize circuits rendering the errors incoherent and leaving the computation unaffected. Here we demonstrate circuit randomization in a superconducting circuit system. We use high-accuracy gate set tomography to demonstrate that without randomization, errors experienced by our experiment have coherent character and that with randomization these errors are rendered incoherent. We also demonstrate that randomization suppresses signatures of non-Markovian evolution to statistically insignificant levels.

[1]  Alan Edelman,et al.  Julia: A Fresh Approach to Numerical Computing , 2014, SIAM Rev..

[2]  D. DiVincenzo,et al.  The Physical Implementation of Quantum Computation , 2000, quant-ph/0002077.

[3]  Scott Aaronson,et al.  Improved Simulation of Stabilizer Circuits , 2004, ArXiv.

[4]  Peter Maunz,et al.  Demonstration of qubit operations below a rigorous fault tolerance threshold with gate set tomography , 2016, Nature Communications.

[5]  Jay M. Gambetta,et al.  Tomography via Correlation of Noisy Measurement Records , 2013, 1310.6448.

[6]  P. Zoller,et al.  Complete Characterization of a Quantum Process: The Two-Bit Quantum Gate , 1996, quant-ph/9611013.

[7]  Jay M. Gambetta,et al.  Self-Consistent Quantum Process Tomography , 2012, 1211.0322.

[8]  M. A. Rol,et al.  Restless Tuneup of High-Fidelity Qubit Gates , 2016, 1611.04815.

[9]  Shelby Kimmel,et al.  Demonstration of robust quantum gate tomography via randomized benchmarking , 2015, 1505.06686.

[10]  J. Emerson,et al.  Scalable noise estimation with random unitary operators , 2005, quant-ph/0503243.

[11]  Andrew W. Cross,et al.  Implementing a strand of a scalable fault-tolerant quantum computing fabric , 2013, Nature Communications.

[12]  Barbara M. Terhal,et al.  Fault-tolerant quantum computation for local non-Markovian noise , 2005 .

[13]  Andrew W. Cross,et al.  Experimental Demonstration of Fault-Tolerant State Preparation with Superconducting Qubits. , 2017, Physical review letters.

[14]  Dorit Aharonov,et al.  Fault-tolerant Quantum Computation with Constant Error Rate * , 1999 .

[15]  John Preskill,et al.  Fault-tolerant quantum computation versus Gaussian noise , 2008, 0810.4953.

[16]  M Steffen,et al.  Efficient measurement of quantum gate error by interleaved randomized benchmarking. , 2012, Physical review letters.

[17]  C. C. Bultink,et al.  Feedback control of a solid-state qubit using high-fidelity projective measurement. , 2012, Physical review letters.

[18]  Raymond Laflamme,et al.  Practical experimental certification of computational quantum gates using a twirling procedure. , 2011, Physical review letters.

[19]  Richard Kueng,et al.  Comparing Experiments to the Fault-Tolerance Threshold. , 2015, Physical review letters.

[20]  Joseph Emerson,et al.  Scalable protocol for identification of correctable codes , 2007, 0710.1900.

[21]  Hideo Mabuchi,et al.  Exact performance of concatenated quantum codes , 2002 .

[22]  Debbie W. Leung,et al.  Quantum data hiding , 2002, IEEE Trans. Inf. Theory.

[23]  John Watrous,et al.  Semidefinite Programs for Completely Bounded Norms , 2009, Theory Comput..

[24]  Joseph Emerson,et al.  Scalable and robust randomized benchmarking of quantum processes. , 2010, Physical review letters.

[25]  Brian Donovan,et al.  Hardware for dynamic quantum computing. , 2017, The Review of scientific instruments.

[26]  Cyril J. Stark,et al.  Self-consistent tomography of the state-measurement Gram matrix , 2012, 1209.5737.

[27]  Kenneth Rudinger,et al.  What Randomized Benchmarking Actually Measures. , 2017, Physical review letters.

[28]  E. S. Pearson,et al.  On the Problem of the Most Efficient Tests of Statistical Hypotheses , 1933 .

[29]  Lorenza Viola,et al.  Random decoupling schemes for quantum dynamical control and error suppression. , 2005, Physical review letters.

[30]  Joel J. Wallman,et al.  Randomized benchmarking with gate-dependent noise , 2017, 1703.09835.

[31]  David Poulin,et al.  A small quantum computer is needed to optimize fault-tolerant protocols , 2017, Quantum Science and Technology.

[32]  J. Gambetta,et al.  Universal quantum gate set approaching fault-tolerant thresholds with superconducting qubits. , 2012, Physical review letters.

[33]  M. Nielsen A simple formula for the average gate fidelity of a quantum dynamical operation [rapid communication] , 2002, quant-ph/0205035.

[34]  Jay M. Gambetta,et al.  Characterizing Quantum Gates via Randomized Benchmarking , 2011, 1109.6887.

[35]  Joel J. Wallman,et al.  Noise tailoring for scalable quantum computation via randomized compiling , 2015, 1512.01098.

[36]  S. S. Wilks The Large-Sample Distribution of the Likelihood Ratio for Testing Composite Hypotheses , 1938 .

[37]  Raymond Laflamme,et al.  Symmetrized Characterization of Noisy Quantum Processes , 2007, Science.

[38]  K. Blum Density Matrix Theory and Applications , 1981 .

[39]  J. Gambetta,et al.  Efficient Z gates for quantum computing , 2016, 1612.00858.

[40]  D. Gottesman The Heisenberg Representation of Quantum Computers , 1998, quant-ph/9807006.

[41]  Daniel Sank,et al.  Fast accurate state measurement with superconducting qubits. , 2014, Physical review letters.

[42]  Luigi Frunzio,et al.  Optimized driving of superconducting artificial atoms for improved single-qubit gates , 2010 .

[43]  S. Shankar Sastry,et al.  Generalized Performance of Concatenated Quantum Codes—A Dynamical Systems Approach , 2006, IEEE Transactions on Automatic Control.

[44]  E. Knill,et al.  Randomized Benchmarking of Quantum Gates , 2007, 0707.0963.

[45]  E. Knill Quantum computing with realistically noisy devices , 2005, Nature.

[46]  Christoph Dankert,et al.  Exact and approximate unitary 2-designs and their application to fidelity estimation , 2009 .

[47]  John Preskill,et al.  Quantum accuracy threshold for concatenated distance-3 codes , 2006, Quantum Inf. Comput..

[48]  I. Chuang,et al.  Quantum Teleportation is a Universal Computational Primitive , 1999, quant-ph/9908010.

[49]  Shelby Kimmel,et al.  Robust Extraction of Tomographic Information via Randomized Benchmarking , 2013, 1306.2348.

[50]  Isaac L. Chuang,et al.  Prescription for experimental determination of the dynamics of a quantum black box , 1997 .

[51]  Charles H. Bennett,et al.  Mixed-state entanglement and quantum error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[52]  John M. Martinis,et al.  Scalable in situ qubit calibration during repetitive error detection , 2016, 1603.03082.