Stabilized Finite Elements on Anisotropic Meshes: A Priori Error Estimates for the Advection-Diffusion and the Stokes Problems

Stabilized finite elements on strongly anisotropic meshes are considered. The design of the stability coefficients is addressed for both the advection-diffusion and the Stokes problems when using continuous piecewise linear finite elements on triangles. Using the polar decomposition of the Jacobian of the affine mapping from the reference triangle to the current one, K, and from a priori error estimates, a new definition of the stability coefficients is proposed. Our analysis shows that these coefficients do not depend on the element diameter hK but on a characteristic length associated with K via the polar decomposition. A numerical assessment of the theoretical analysis is carried out.

[1]  L. Franca,et al.  Error analysis of some Galerkin least squares methods for the elasticity equations , 1991 .

[2]  Sanjay Mittal,et al.  On the performance of high aspect ratio elements for incompressible flows , 2000 .

[3]  T. Apel,et al.  Anisotropic mesh refinement in stabilized Galerkin methods , 1996 .

[4]  Kenneth Eriksson,et al.  Adaptive streamline diffusion finite element methods for stationary convection-diffusion problems , 1993 .

[5]  T. Hughes,et al.  A new finite element formulation for computational fluid dynamics: VI. Convergence analysis of the generalized SUPG formulation for linear time-dependent multi-dimensional advective-diffusive systems , 1987 .

[6]  L. Franca,et al.  Stabilized Finite Element Methods , 1993 .

[7]  Gerd Kunert Robust a Posteriori Error Estimation for a Singularly Perturbed Reaction–Diffusion Equation on Anisotropic Tetrahedral Meshes , 2001, Adv. Comput. Math..

[8]  Marek Behr,et al.  Stabilized finite element methods for the velocity-pressure-stress formulation of incompressible flows , 1993 .

[9]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[10]  Jean-Frédéric Gerbeau,et al.  A stabilized finite element method for the incompressible magnetohydrodynamic equations , 2000, Numerische Mathematik.

[11]  Kunibert G. Siebert,et al.  An a posteriori error estimator for anisotropic refinement , 1996 .

[12]  M. Stynes,et al.  Numerical methods for singularly perturbed differential equations : convection-diffusion and flow problems , 1996 .

[13]  Simona Perotto,et al.  Anisotropic error estimates for elliptic problems , 2003, Numerische Mathematik.

[14]  John J. H. Miller Fitted Numerical Methods for Singular Perturbation Problems: Error Estimates in the Maximum Norm for Linear Problems in One and Two Dimensions , 1996 .

[15]  J. Lions,et al.  Non-homogeneous boundary value problems and applications , 1972 .

[16]  Gerd Kunert,et al.  A posteriori error estimation for anisotropic tetrahedral and triangular finite element meshes , 1999 .

[17]  Simona Perotto,et al.  New anisotropic a priori error estimates , 2001, Numerische Mathematik.

[18]  Marco Picasso,et al.  An Anisotropic Error Indicator Based on Zienkiewicz-Zhu Error Estimator: Application to Elliptic and Parabolic Problems , 2002, SIAM J. Sci. Comput..

[19]  T. Hughes,et al.  A new finite element formulation for computational fluid dynamics: II. Beyond SUPG , 1986 .

[20]  Rüdiger Verfürth,et al.  Error estimates for a mixed finite element approximation of the Stokes equations , 1984 .

[21]  Alessandro Russo,et al.  CHOOSING BUBBLES FOR ADVECTION-DIFFUSION PROBLEMS , 1994 .

[22]  R. Rannacher,et al.  Finite Element Solution of the Incompressible Navier-Stokes Equations on Anisotropically Refined Meshes , 1995 .

[23]  T. Apel Anisotropic Finite Elements: Local Estimates and Applications , 1999 .

[24]  F. Baaijens Mixed finite element methods for viscoelastic flow analysis : a review , 1998 .

[25]  Alessandro Russo,et al.  Bubble stabilization of finite element methods for the linearized incompressible Navier-Stokes equations , 1996 .

[26]  Thomas J. R. Hughes,et al.  What are C and h ?: inequalities for the analysis and design of finite element methods , 1992 .

[27]  D. Chapelle,et al.  Stabilized Finite Element Formulations for Shells in a Bending Dominated State , 1998 .

[28]  Gene H. Golub,et al.  Matrix computations , 1983 .

[29]  Simona Perotto,et al.  Anisotropic Mesh Adaption with Application to CFD Problems , 2002 .

[30]  Alexandre L. Madureira,et al.  Element diameter free stability parameters for stabilized methods applied to fluids , 1993 .

[31]  Jim Douglas,et al.  An absolutely stabilized finite element method for the stokes problem , 1989 .

[32]  T. Hughes,et al.  A new finite element formulation for computational fluid dynamics: V. Circumventing the Babuscka-Brezzi condition: A stable Petrov-Galerkin formulation of , 1986 .

[33]  Houman Borouchaki,et al.  The BL2D Mesh Generator: Beginner's Guide, User's and Programmer's Manual , 1996 .

[34]  L. Franca,et al.  Stabilized finite element methods. II: The incompressible Navier-Stokes equations , 1992 .

[35]  T. Hughes,et al.  Convergence analyses of Galerkin least-squares methods for symmetric advective-diffusive forms of the Stokes and incompressible Navier-Stokes equations , 1993 .

[36]  Eugene O'Riordan,et al.  Numerical Methods for Singular Perturbation Problems , 1996 .

[37]  T. Hughes,et al.  The Galerkin/least-squares method for advective-diffusive equations , 1988 .

[38]  T. Hughes,et al.  Stabilized finite element methods. I: Application to the advective-diffusive model , 1992 .

[39]  Stefano Micheletti,et al.  Stabilized finite elements for semiconductor device simulation , 2001 .

[40]  T. Hughes,et al.  Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations , 1990 .

[41]  P. Clément Approximation by finite element functions using local regularization , 1975 .

[42]  Lutz Tobiska,et al.  Numerical Methods for Singularly Perturbed Differential Equations , 1996 .

[43]  R. Stenberg,et al.  GLS and EVSS methods for a three-field Stokes problem arising from viscoelastic flows , 2001 .