Stabilized Finite Elements on Anisotropic Meshes: A Priori Error Estimates for the Advection-Diffusion and the Stokes Problems
暂无分享,去创建一个
[1] L. Franca,et al. Error analysis of some Galerkin least squares methods for the elasticity equations , 1991 .
[2] Sanjay Mittal,et al. On the performance of high aspect ratio elements for incompressible flows , 2000 .
[3] T. Apel,et al. Anisotropic mesh refinement in stabilized Galerkin methods , 1996 .
[4] Kenneth Eriksson,et al. Adaptive streamline diffusion finite element methods for stationary convection-diffusion problems , 1993 .
[5] T. Hughes,et al. A new finite element formulation for computational fluid dynamics: VI. Convergence analysis of the generalized SUPG formulation for linear time-dependent multi-dimensional advective-diffusive systems , 1987 .
[6] L. Franca,et al. Stabilized Finite Element Methods , 1993 .
[7] Gerd Kunert. Robust a Posteriori Error Estimation for a Singularly Perturbed Reaction–Diffusion Equation on Anisotropic Tetrahedral Meshes , 2001, Adv. Comput. Math..
[8] Marek Behr,et al. Stabilized finite element methods for the velocity-pressure-stress formulation of incompressible flows , 1993 .
[9] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.
[10] Jean-Frédéric Gerbeau,et al. A stabilized finite element method for the incompressible magnetohydrodynamic equations , 2000, Numerische Mathematik.
[11] Kunibert G. Siebert,et al. An a posteriori error estimator for anisotropic refinement , 1996 .
[12] M. Stynes,et al. Numerical methods for singularly perturbed differential equations : convection-diffusion and flow problems , 1996 .
[13] Simona Perotto,et al. Anisotropic error estimates for elliptic problems , 2003, Numerische Mathematik.
[14] John J. H. Miller. Fitted Numerical Methods for Singular Perturbation Problems: Error Estimates in the Maximum Norm for Linear Problems in One and Two Dimensions , 1996 .
[15] J. Lions,et al. Non-homogeneous boundary value problems and applications , 1972 .
[16] Gerd Kunert,et al. A posteriori error estimation for anisotropic tetrahedral and triangular finite element meshes , 1999 .
[17] Simona Perotto,et al. New anisotropic a priori error estimates , 2001, Numerische Mathematik.
[18] Marco Picasso,et al. An Anisotropic Error Indicator Based on Zienkiewicz-Zhu Error Estimator: Application to Elliptic and Parabolic Problems , 2002, SIAM J. Sci. Comput..
[19] T. Hughes,et al. A new finite element formulation for computational fluid dynamics: II. Beyond SUPG , 1986 .
[20] Rüdiger Verfürth,et al. Error estimates for a mixed finite element approximation of the Stokes equations , 1984 .
[21] Alessandro Russo,et al. CHOOSING BUBBLES FOR ADVECTION-DIFFUSION PROBLEMS , 1994 .
[22] R. Rannacher,et al. Finite Element Solution of the Incompressible Navier-Stokes Equations on Anisotropically Refined Meshes , 1995 .
[23] T. Apel. Anisotropic Finite Elements: Local Estimates and Applications , 1999 .
[24] F. Baaijens. Mixed finite element methods for viscoelastic flow analysis : a review , 1998 .
[25] Alessandro Russo,et al. Bubble stabilization of finite element methods for the linearized incompressible Navier-Stokes equations , 1996 .
[26] Thomas J. R. Hughes,et al. What are C and h ?: inequalities for the analysis and design of finite element methods , 1992 .
[27] D. Chapelle,et al. Stabilized Finite Element Formulations for Shells in a Bending Dominated State , 1998 .
[28] Gene H. Golub,et al. Matrix computations , 1983 .
[29] Simona Perotto,et al. Anisotropic Mesh Adaption with Application to CFD Problems , 2002 .
[30] Alexandre L. Madureira,et al. Element diameter free stability parameters for stabilized methods applied to fluids , 1993 .
[31] Jim Douglas,et al. An absolutely stabilized finite element method for the stokes problem , 1989 .
[32] T. Hughes,et al. A new finite element formulation for computational fluid dynamics: V. Circumventing the Babuscka-Brezzi condition: A stable Petrov-Galerkin formulation of , 1986 .
[33] Houman Borouchaki,et al. The BL2D Mesh Generator: Beginner's Guide, User's and Programmer's Manual , 1996 .
[34] L. Franca,et al. Stabilized finite element methods. II: The incompressible Navier-Stokes equations , 1992 .
[35] T. Hughes,et al. Convergence analyses of Galerkin least-squares methods for symmetric advective-diffusive forms of the Stokes and incompressible Navier-Stokes equations , 1993 .
[36] Eugene O'Riordan,et al. Numerical Methods for Singular Perturbation Problems , 1996 .
[37] T. Hughes,et al. The Galerkin/least-squares method for advective-diffusive equations , 1988 .
[38] T. Hughes,et al. Stabilized finite element methods. I: Application to the advective-diffusive model , 1992 .
[39] Stefano Micheletti,et al. Stabilized finite elements for semiconductor device simulation , 2001 .
[40] T. Hughes,et al. Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations , 1990 .
[41] P. Clément. Approximation by finite element functions using local regularization , 1975 .
[42] Lutz Tobiska,et al. Numerical Methods for Singularly Perturbed Differential Equations , 1996 .
[43] R. Stenberg,et al. GLS and EVSS methods for a three-field Stokes problem arising from viscoelastic flows , 2001 .