Longest subsequences in permutations
暂无分享,去创建一个
Jaroslav Opatrny | Mike D. Atkinson | Robert E. L. Aldred | Hans van Ditmarsch | Michael H. Albert | Chris C. Handley | B. D. Handley
[1] P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .
[2] Walter Unger,et al. The Complexity of Colouring Circle Graphs (Extended Abstract) , 1992, STACS.
[4] Miklós Bóna. The Solution of a Conjecture of Stanley and Wilf for All Layered Patterns , 1999, J. Comb. Theory, Ser. A.
[5] Mike D. Atkinson,et al. Restricted permutations , 1999, Discret. Math..
[6] Walter UngerFachbereich. The Complexity of Colouring Circle Graphs , 1992 .
[7] David Gries,et al. The Science of Programming , 1981, Text and Monographs in Computer Science.
[8] P. Diaconis,et al. Longest increasing subsequences: from patience sorting to the Baik-Deift-Johansson theorem , 1999 .
[9] Michael L. Fredman,et al. On computing the length of longest increasing subsequences , 1975, Discret. Math..
[10] S. Salzberg,et al. Alignment of whole genomes. , 1999, Nucleic acids research.
[11] Prosenjit Bose,et al. Pattern Matching for Permutations , 1993, WADS.
[12] C. Schensted. Longest Increasing and Decreasing Subsequences , 1961, Canadian Journal of Mathematics.
[13] Mike D. Atkinson,et al. Algorithms for Pattern Involvement in Permutations , 2001, ISAAC.
[14] G. Andrews. ENUMERATIVE COMBINATORICS, VOLUME 2 (Cambridge Studies in Advanced Mathematics 62) By R ICHARD P. S TANLEY : 581 pp., £45.00 (US$69.95), ISBN 0 521 56069 1 (Cambridge University Press, 1999). , 2000 .
[15] Walter Unger,et al. On the k-Colouring of Circle-Graphs , 1988, STACS.