Exploring the effect of absence selection on landslide susceptibility models: A case study in Sicily, Italy

[1]  L B Lusted,et al.  Radiographic applications of receiver operating characteristic (ROC) curves. , 1974, Radiology.

[2]  G. Wahba Smoothing noisy data with spline functions , 1975 .

[3]  Peter Craven,et al.  Smoothing noisy data with spline functions , 1978 .

[4]  K. Beven,et al.  A physically based, variable contributing area model of basin hydrology , 1979 .

[5]  J. Hanley,et al.  The meaning and use of the area under a receiver operating characteristic (ROC) curve. , 1982, Radiology.

[6]  Alberto Carrara,et al.  Multivariate models for landslide hazard evaluation , 1983 .

[7]  E. E. Brabb Innovative approaches to landslide hazard and risk mapping , 1985 .

[8]  C. Thorne,et al.  Quantitative analysis of land surface topography , 1987 .

[9]  David W. Hosmer,et al.  Applied Logistic Regression , 1991 .

[10]  J. Friedman Multivariate adaptive regression splines , 1990 .

[11]  P. Reichenbach,et al.  GIS techniques and statistical models in evaluating landslide hazard , 1991 .

[12]  J. Freidman,et al.  Multivariate adaptive regression splines , 1991 .

[13]  P. Reichenbach,et al.  Gis Technology in Mapping Landslide Hazard , 1995 .

[14]  P. Reichenbach,et al.  Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, Central Italy , 1999 .

[15]  P. Aleotti,et al.  Landslide hazard assessment: summary review and new perspectives , 1999 .

[16]  A. Clerici,et al.  A procedure for landslide susceptibility zonation by the conditional analysis method , 2002 .

[17]  Joseph D Conklin,et al.  Applied Logistic Regression , 2002, Technometrics.

[18]  John C. Davis,et al.  Using multiple logistic regression and GIS technology to predict landslide hazard in northeast Kansas, USA , 2003 .

[19]  Andrea G. Fabbri,et al.  Validation of Spatial Prediction Models for Landslide Hazard Mapping , 2003 .

[20]  S. Weiss,et al.  GLM versus CCA spatial modeling of plant species distribution , 1999, Plant Ecology.

[21]  Lionel C. Briand,et al.  Using multiple adaptive regression splines to support decision making in code inspections , 2004, J. Syst. Softw..

[22]  T. Hastie,et al.  Using multivariate adaptive regression splines to predict the distributions of New Zealand ’ s freshwater diadromous fish , 2005 .

[23]  Lucila Ohno-Machado,et al.  The use of receiver operating characteristic curves in biomedical informatics , 2005, J. Biomed. Informatics.

[24]  Saro Lee,et al.  Application and cross-validation of spatial logistic multiple regression for landslide susceptibility analysis , 2005 .

[25]  A. Brenning Spatial prediction models for landslide hazards: review, comparison and evaluation , 2005 .

[26]  R. Soeters,et al.  Landslide hazard and risk zonation—why is it still so difficult? , 2006 .

[27]  M. Eeckhaut,et al.  Prediction of landslide susceptibility using rare events logistic regression: A case-study in the Flemish Ardennes (Belgium) , 2006 .

[28]  P. Reichenbach,et al.  Estimating the quality of landslide susceptibility models , 2006 .

[29]  H. A. Nefeslioglu,et al.  An assessment on the use of logistic regression and artificial neural networks with different sampling strategies for the preparation of landslide susceptibility maps , 2008 .

[30]  P. Frattini,et al.  Comparing models of debris-flow susceptibility in the alpine environment , 2008 .

[31]  S. L. Kuriakose,et al.  Spatial data for landslide susceptibility, hazard, and vulnerability assessment: An overview , 2008 .

[32]  S. Schnabel,et al.  Using and comparing two nonparametric methods (CART and MARS) to model the potential distribution of gullies , 2009 .

[33]  Ángel M. Felicísimo,et al.  Modelling the occurrence of gullies in rangelands of southwest Spain , 2009 .

[34]  Manfred F. Buchroithner,et al.  A GIS-based back-propagation neural network model and its cross-application and validation for landslide susceptibility analyses , 2010, Comput. Environ. Urban Syst..

[35]  Christian Conoscenti,et al.  Exporting a Google Earth™ aided earth-flow susceptibility model: a test in central Sicily , 2012, Natural Hazards.

[36]  Christian Conoscenti,et al.  The role of the diagnostic areas in the assessment of landslide susceptibility models: a test in the sicilian chain , 2011 .

[37]  Peter M. Atkinson,et al.  Autologistic modelling of susceptibility to landsliding in the Central Apennines, Italy , 2011 .

[38]  Norman Kerle,et al.  Object-based gully feature extraction using high spatial resolution imagery , 2011 .

[39]  Peter Lehmann,et al.  Spatial statistical modeling of shallow landslides—Validating predictions for different landslide inventories and rainfall events , 2011 .

[40]  Farrokh Nadim,et al.  Statistical modelling of Europe-wide landslide susceptibility using limited landslide inventory data , 2012, Landslides.

[41]  T. Groen,et al.  Spatial autocorrelation in predictors reduces the impact of positional uncertainty in occurrence data on species distribution modelling , 2011 .

[42]  M. Seta,et al.  Landslide susceptibility assessment in the Upper Orcia Valley (Southern Tuscany, Italy) through conditional analysis: A contribution to the unbiased selection of causal factors , 2011 .

[43]  D. Costanzo,et al.  Slope units-based flow susceptibility model: using validation tests to select controlling factors , 2012, Natural Hazards.

[44]  Vicki G. Moon,et al.  Comparison of bivariate and multivariate statistical approaches in landslide susceptibility mapping at a regional scale , 2012 .

[45]  F. Guzzetti,et al.  Landslide inventory maps: New tools for an old problem , 2012 .

[46]  C. Irigaray,et al.  Factors selection in landslide susceptibility modelling on large scale following the gis matrix method: application to the river Beiro basin (Spain) , 2012 .

[47]  Boris Schröder,et al.  How can statistical models help to determine driving factors of landslides , 2012 .

[48]  Á. Felicísimo,et al.  Mapping landslide susceptibility with logistic regression, multiple adaptive regression splines, classification and regression trees, and maximum entropy methods: a comparative study , 2013, Landslides.

[49]  C. Irigaray,et al.  Forward logistic regression for earth-flow landslide susceptibility assessment in the Platani river basin (southern Sicily, Italy) , 2014, Landslides.

[50]  M. Becht,et al.  Sample size matters: investigating the effect of sample size on a logistic regression susceptibility model for debris flows , 2014 .

[51]  Mustafa Neamah Jebur,et al.  Optimization of landslide conditioning factors using very high-resolution airborne laser scanning (LiDAR) data at catchment scale , 2014 .

[52]  S. Pascale,et al.  Evaluation of prediction capability of the artificial neural networks for mapping landslide susceptibility in the Turbolo River catchment (northern Calabria, Italy) , 2014 .

[53]  E. Rotigliano,et al.  A test of transferability for landslides susceptibility models under extreme climatic events: application to the Messina 2009 disaster , 2014, Natural Hazards.

[54]  Biswajeet Pradhan,et al.  Spatial prediction models for shallow landslide hazards: a comparative assessment of the efficacy of support vector machines, artificial neural networks, kernel logistic regression, and logistic model tree , 2016, Landslides.

[55]  E. Rotigliano,et al.  Assessment of susceptibility to earth-flow landslide using logistic regression and multivariate adaptive regression splines: A case of the Belice River basin (western Sicily, Italy) , 2015 .

[56]  Luigi Borrelli,et al.  Shallow landslides triggered by consecutive rainfall events at Catanzaro strait (Calabria–Southern Italy) , 2015 .

[57]  Alexander Brenning,et al.  Evaluating machine learning and statistical prediction techniques for landslide susceptibility modeling , 2015, Comput. Geosci..

[58]  E. Rotigliano,et al.  Using topographical attributes to evaluate gully erosion proneness (susceptibility) in two mediterranean basins: advantages and limitations , 2015, Natural Hazards.

[59]  E. Rotigliano,et al.  Binary logistic regression versus stochastic gradient boosted decision trees in assessing landslide susceptibility for multiple-occurring landslide events: application to the 2009 storm event in Messina (Sicily, southern Italy) , 2015, Natural Hazards.

[60]  E. Rotigliano,et al.  Predicting storm-triggered debris flow events: application to the 2009 Ionian Peloritan disaster (Sicily, Italy) , 2015 .

[61]  Deo Raj Gurung,et al.  Abe Barek landslide and landslide susceptibility assessment in Badakhshan Province, Afghanistan , 2015, Landslides.