Varadhan's formula, conditioned diffusions, and local volatilities

Motivated by marginals-mimicking results for It\^o processes via SDEs and by their applications to volatility modeling in finance, we discuss the weak convergence of the law of a hypoelliptic diffusions conditioned to belong to a target affine subspace at final time, namely $\mathcal{L}(Z_t|Y_t = y)$ if $X_{\cdot}=(Y_\cdot,Z_{\cdot})$. To do so, we revisit Varadhan-type estimates in a small-noise regime (as opposed to small-time), studying the density of the lower-dimensional component $Y$. The application to stochastic volatility models include the small-time and, for certain models, the large-strike asymptotics of the Gyongy-Dupire's local volatility function. The final product are asymptotic formulae that can (i) motivate parameterizations of the local volatility surface and (ii) be used to extrapolate local volatilities in a given model.

[1]  David L. Elliott,et al.  Geometric control theory , 2000, IEEE Trans. Autom. Control..

[2]  R. Léandre,et al.  Décroissance exponentielle du noyau de la chaleur sur la diagonale (II) , 1991 .

[3]  P. Henry-Labordère Analysis, Geometry, and Modeling in Finance: Advanced Methods in Option Pricing , 2008 .

[4]  Antoine Jacquier,et al.  Marginal Density Expansions for Diffusions and Stochastic Volatility II: Applications , 2014 .

[5]  R. Léandre,et al.  Minoration en temps petit de la densité d'une diffusion dégénérée , 1987 .

[6]  E. Stein,et al.  Stock Price Distributions with Stochastic Volatility: An Analytic Approach , 1991 .

[7]  Tübinger Diskussionsbeiträge Stochastic volatility with an Ornstein-Uhlenbeck process: An extension , 2014 .

[8]  The Heat-Kernel Most-Likely-Path Approximation , 2011 .

[9]  S. Heston A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options , 1993 .

[10]  Elton P. Hsu,et al.  ASYMPTOTICS OF IMPLIED VOLATILITY IN LOCAL VOLATILITY MODELS , 2009 .

[11]  I. Gyöngy Mimicking the one-dimensional marginal distributions of processes having an ito differential , 1986 .

[12]  Jim Gatheral,et al.  Arbitrage-free SVI volatility surfaces , 2012, 1204.0646.

[13]  S. Kusuoka,et al.  A remark on the asymptotic expansion of density function of Wiener functionals , 2008 .

[14]  Stefano De Marco,et al.  Smoothness and asymptotic estimates of densities for SDEs with locally smooth coefficients and applications to square root-type diffusions , 2011 .

[15]  D. Stroock,et al.  Applications of the Malliavin calculus. II , 1985 .

[16]  Antoine Jacquier,et al.  Large Deviations and Asymptotic Methods in Finance , 2015 .

[17]  G. Ben Arous,et al.  Développement asymptotique du noyau de la chaleur hypoelliptique hors du cut-locus , 1988 .

[18]  Archil Gulisashvili,et al.  Asymptotic Formulas with Error Estimates for Call Pricing Functions and the Implied Volatility at Extreme Strikes , 2009, SIAM J. Financial Math..

[20]  S. Gerhold,et al.  Don't stay local - extrapolation analytics for Dupire's local volatility , 2011, 1105.1267.

[21]  Marion Kee,et al.  Analysis , 2004, Machine Translation.

[22]  Antoine Jacquier,et al.  Marginal Density Expansions for Diffusions and Stochastic Volatility I: Theoretical Foundations , 2011, 1111.2462.

[23]  D. Nualart The Malliavin Calculus and Related Topics , 1995 .

[24]  P. Baldi,et al.  General Freidlin-Wentzell Large Deviations and positive diffusions , 2011 .

[25]  Bruno Dupire Pricing with a Smile , 1994 .

[26]  Stanislav Molchanov,et al.  DIFFUSION PROCESSES AND RIEMANNIAN GEOMETRY , 1975 .

[27]  Roger Lee THE MOMENT FORMULA FOR IMPLIED VOLATILITY AT EXTREME STRIKES , 2004 .

[28]  R. Léandre,et al.  Decroissance exponentielle du noyau de la chaleur sur la diagonale (I) , 1991 .

[29]  Peter K. Friz,et al.  On the probability density function of baskets , 2015 .

[30]  J. Bismut Large Deviations and the Malliavin Calculus , 1984 .

[31]  Archil Gulisashvili,et al.  Analytically Tractable Stochastic Stock Price Models , 2012 .

[32]  池田 信行,et al.  Stochastic differential equations and diffusion processes , 1981 .

[33]  A. Agrachev,et al.  Continuity of optimal control costs and its application to weak KAM theory , 2009, 0909.3826.

[34]  Y. Inahama Large Deviations for Rough Path Lifts of Watanabe's Pullbacks of Delta Functions , 2014, 1412.8113.

[35]  Ludovic Rifford,et al.  Semiconcavity results for optimal control problems admitting no singular minimizing controls , 2008 .

[36]  M. Fukasawa Short-time at-the-money skew and rough fractional volatility , 2015, 1501.06980.

[37]  M. Keller-Ressel,et al.  MOMENT EXPLOSIONS AND LONG‐TERM BEHAVIOR OF AFFINE STOCHASTIC VOLATILITY MODELS , 2008, 0802.1823.

[38]  Stefan Gerhold,et al.  How to make Dupire’s local volatility work with jumps¶ , 2013, 1302.5548.

[39]  H. Berestycki,et al.  Computing the implied volatility in stochastic volatility models , 2004 .

[40]  R. Léandre Integration dans la fibre associée a une diffusion dégénérée , 1987 .