Measurement Uncertainty and Probability: References

Part I. Principles: 1. Introduction 2. Foundational ideas in measurement 3. Components of error or uncertainty 4. Foundational ideas in probability and statistics 5. The randomization of systematic errors 6. Beyond the standard confidence interval Part II. Evaluation of Uncertainty: 7. Final preparation 8. Evaluation using the linear approximation 9. Evaluation without the linear approximations 10. Uncertainty information fit for purpose Part III. Related Topics: 11. Measurement of vectors and functions 12. Why take part in a measurement comparison? 13. Other philosophies 14. An assessment of objective Bayesian methods 15. A guide to the expression of uncertainty in measurement 16. Measurement near a limit - an insoluble problem? References Index.

[1]  S. Geisser,et al.  Posterior Distributions for Multivariate Normal Parameters , 1963 .

[2]  James O. Berger,et al.  The interplay of Bayesian and frequentist analysis , 2004 .

[3]  R. Willink A formulation of the law of propagation of uncertainty to facilitate the treatment of shared influences , 2009 .

[4]  R Willink,et al.  Uncertainty analysis by moments for asymmetric variables , 2006 .

[5]  Walter Bich,et al.  How to revise the GUM? , 2008 .

[6]  Clemens Elster,et al.  Linking of a RMO key comparison to a related CIPM key comparison using the degrees of equivalence of the linking laboratories , 2010 .

[7]  B D Hall,et al.  Computing uncertainty with uncertain numbers , 2006 .

[8]  Chih-Ming Wang,et al.  Fiducial approach for assessing agreement between two instruments , 2008 .

[9]  F. H. C. Marriott,et al.  A Dictionary of Statistical Terms. , 1991 .

[10]  A. W. Kemp,et al.  Univariate Discrete Distributions , 1993 .

[11]  R Willink,et al.  A procedure for the evaluation of measurement uncertainty based on moments , 2005 .

[12]  Semyon G. Rabinovich,et al.  Towards a new edition of the “Guide to the expression of uncertainty in measurement” , 2007 .

[13]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[14]  Chih-Ming Wang,et al.  Uncertainty analysis for vector measurands using fiducial inference , 2006 .

[15]  N. Reid,et al.  Inference for bounded parameters , 2004 .

[16]  E. Jaynes On the rationale of maximum-entropy methods , 1982, Proceedings of the IEEE.

[17]  Raghu N. Kacker,et al.  Evolution of modern approaches to express uncertainty in measurement , 2007 .

[18]  A. W. Kemp,et al.  Kendall's Advanced Theory of Statistics. , 1994 .

[19]  C. D. Litton,et al.  Comparative Statistical Inference. , 1975 .

[20]  R Willink Estimation and uncertainty in fitting straight lines to data: different techniques , 2008 .

[21]  Richard A. Johnson,et al.  Applied Multivariate Statistical Analysis , 1983 .

[22]  Rupert G. Miller Simultaneous Statistical Inference , 1966 .

[23]  Clemens Elster,et al.  Analysis of key comparisons: estimating laboratories' biases by a fixed effects model using Bayesian model averaging , 2010 .

[24]  Churchill Eisenhart,et al.  Realistic evaluation of the precision and accuracy of instrument calibration systems , 1963 .

[25]  L. Gleser,et al.  Setting confidence intervals for bounded parameters , 2002 .

[26]  Karl R. Popper The Logic of Scientific Discovery. , 1977 .

[27]  Carl C Gaither,et al.  Statistically Speaking: A Dictionary of Quotations , 1996 .

[28]  E. Jaynes Information Theory and Statistical Mechanics , 1957 .

[29]  H. Iyer,et al.  On interchangeability of two laboratories , 2010 .

[30]  D. C. Bowden,et al.  Linear Segment Confidence Bands for Simple Linear Models , 1967 .

[31]  O. J. Dunn A Note on Confidence Bands for a Regression Line over a Finite Range , 1968 .

[32]  John Skilling,et al.  Data analysis : a Bayesian tutorial , 1996 .

[33]  Probability, belief and success rate: comments on 'On the meaning of coverage probabilities' , 2010 .

[34]  A. J. Collins,et al.  Introduction to Multivariate Analysis , 1982 .

[35]  Hari Iyer,et al.  Propagation of uncertainties in measurements using generalized inference , 2005 .

[36]  B D Hall,et al.  Evaluating methods of calculating measurement uncertainty , 2008 .

[37]  H. Iyer,et al.  Fiducial intervals for the magnitude of a complex-valued quantity , 2009 .

[38]  J. Neyman Outline of a Theory of Statistical Estimation Based on the Classical Theory of Probability , 1937 .

[39]  R. Cousins,et al.  A Unified Approach to the Classical Statistical Analysis of Small Signals , 1997, physics/9711021.

[40]  J. M. Hammersley,et al.  Basic Concepts of Probability and Statistics , 1964 .

[41]  Patrick F. Dunn,et al.  Measurement and Data Analysis for Engineering and Science , 2017 .

[42]  Franco Pavese,et al.  Data modeling for metrology and testing in measurement science , 2009 .

[43]  Ronald L. Wasserstein,et al.  Monte Carlo: Concepts, Algorithms, and Applications , 1997 .

[44]  Clemens Elster,et al.  Evaluation of measurement uncertainty in the presence of combined random and analogue-to-digital conversion errors , 2000 .

[45]  N. L. Johnson,et al.  Continuous Univariate Distributions. , 1995 .

[46]  Rupert G. Miller Beyond ANOVA, basics of applied statistics , 1987 .

[47]  A. R. Colclough,et al.  Two Theories of Experimental Error , 1987, Journal of Research of the National Bureau of Standards.

[48]  Zvi Boger,et al.  Statistical Treatment of Analytical Data , 2004 .

[49]  Paweł Fotowicz,et al.  An analytical method for calculating a coverage interval , 2006 .

[50]  L. Kirkup,et al.  An Introduction to Uncertainty in Measurement: Introduction to uncertainty in measurement , 2006 .

[51]  Hugh W. Coleman,et al.  Experimentation and Uncertainty Analysis for Engineers , 1989 .

[52]  Hideyuki Tanaka,et al.  Bayesian statistics for determination of the reference value and degree of equivalence of inconsistent comparison data , 2010 .

[53]  S. G. Rabinovich Measurement Errors: Theory and Practice , 1994 .

[54]  Edwin T. Jaynes Prior Probabilities , 2010, Encyclopedia of Machine Learning.

[55]  A. Satorra,et al.  Measurement Error Models , 1988 .

[56]  S S Stevens,et al.  On the Theory of Scales of Measurement. , 1946, Science.

[57]  G. P. Bhattacharjee,et al.  Dimensional Chains Involving Rectangular and Normal Error-Distributions , 1963 .

[58]  Jan Khre,et al.  The Mathematical Theory of Information , 2012 .

[59]  R. Willink Difficulties arising from the representation of the measurand by a probability distribution , 2009 .

[60]  Franco Pavese,et al.  Advanced Mathematical and Computational Tools in Metrology IV , 2000 .

[61]  R Willink,et al.  A generalization of the Welch–Satterthwaite formula for use with correlated uncertainty components , 2007 .

[62]  C. Croarkin,et al.  An Extended Error Model for Comparison Calibration , 1989 .

[63]  Robert Hooke,et al.  Uncertainty, Calibration and Probability. , 1974 .

[64]  Y. Beers Introduction to the theory of error , 1953 .

[65]  R Willink On the uncertainty of the mean of digitized measurements , 2007 .

[66]  Ifan G. Hughes,et al.  Measurements and their Uncertainties: A practical guide to modern error analysis , 2010 .

[67]  R B Frenkel Fiducial inference applied to uncertainty estimation when identical readings are obtained under low instrument resolution , 2009 .

[68]  George E. P. Box,et al.  Empirical Model‐Building and Response Surfaces , 1988 .

[69]  R. Willink Measurement of small quantities: further observations on Bayesian methodology , 2010 .

[70]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1967 .

[71]  P. R. Bevington,et al.  Data Reduction and Error Analysis for the Physical Sciences , 1969 .

[72]  W. G. Howe Two-Sided Tolerance Limits for Normal Populations—Some Improvements , 1969 .

[73]  John Mandel,et al.  The Statistical Analysis of Experimental Data , 1965 .

[74]  Jan Hannig,et al.  Fiducial approach to uncertainty assessment accounting for error due to instrument resolution , 2007 .

[75]  Michael Grabe Measurement uncertainties in science and technology , 2004 .