Discussing State‐of‐the‐Art Spatial Visualization Techniques Applicable for the Epidemiological Surveillance Data on the Example of Campylobacter spp. in Raw Chicken Meat

Within the European activities for the ‘Monitoring and Collection of Information on Zoonoses’, annually EFSA publishes a European report, including information related to the prevalence of Campylobacter spp. in Germany. Spatial epidemiology becomes here a fundamental tool for the generation of these reports, including the representation of prevalence as an essential element. Until now, choropleth maps are the default visualization technique applied in epidemiological monitoring and surveillance reports made by EFSA and German authorities. However, due to its limitations, it seems to be reasonable to explore alternative chart type. Four maps including choropleth, cartogram, graduated symbols and dot‐density maps were created to visualize real‐world sample data on the prevalence of Campylobacter spp. in raw chicken meat samples in Germany in 2011. In addition, adjacent and coincident maps were created to visualize also the associated uncertainty. As an outcome, we found that there is not a single data visualization technique that encompasses all the necessary features to visualize prevalence data alone or prevalence data together with their associated uncertainty. All the visualization techniques contemplated in this study demonstrated to have both advantages and disadvantages. To determine which visualization technique should be used for future reports, we recommend to create a dialogue between end‐users and epidemiologists on the basis of sample data and charts. The final decision should also consider the knowledge and experience of end‐users as well as the specific objective to be achieved with the charts.

[1]  K. Nagy,et al.  The European Union summary report on trends and sources of zoonoses, zoonotic agents and food‐borne outbreaks in 2017 , 2018, EFSA journal. European Food Safety Authority.

[2]  J. M. Cerezo Rodrigo Rodrigues-Silveira. Representación espacial y mapas. Madrid: CIS, Col. Cuadernos Metodológicos, nº. 50, 2013 , 2014 .

[3]  A. Tritscher,et al.  World Health Organization initiative to estimate the global burden of foodborne diseases. , 2013, Revue scientifique et technique.

[4]  Stefan Steiniger,et al.  The 2012 free and open source GIS software map - A guide to facilitate research, development, and adoption , 2013, Comput. Environ. Urban Syst..

[5]  Edzer Pebesma,et al.  Uncertainty visualisation in the Model Web , 2012 .

[6]  Robert Koch-Institut Infektionsepidemiologisches Jahrbuch meldepflichtiger Krankheiten für 2011 , 2012 .

[7]  D. Dorling Area Cartograms: Their Use and Creation , 2011 .

[8]  Guillaume Caumon,et al.  Adjacent versus coincident representations of geospatial uncertainty: Which promote better decisions? , 2011, Comput. Geosci..

[9]  P. Kennelly,et al.  Illuminated Choropleth Maps , 2010 .

[10]  Robert E Roth,et al.  Value-by-alpha Maps: An Alternative Technique to the Cartogram , 2010, The Cartographic journal.

[11]  Niels Skovgaard,et al.  Foodborne Disease Outbreaks, Guidelines for investigation and control , 2009 .

[12]  Ellen K Cromley,et al.  Choropleth map legend design for visualizing community health disparities , 2009, International journal of health geographics.

[13]  Erwan Bocher,et al.  An overview on current free and open source desktop GIS developments , 2009, Int. J. Geogr. Inf. Sci..

[14]  Jun Lin Novel approaches for Campylobacter control in poultry. , 2009, Foodborne pathogens and disease.

[15]  A. Käsbohrer,et al.  EU-weite und nationale Monitoringprogramme zu Zoonoseerregern in Deutschland , 2009, Journal für Verbraucherschutz und Lebensmittelsicherheit.

[16]  W. Verstraeten,et al.  Relating increasing hantavirus incidences to the changing climate: the mast connection , 2009, International journal of health geographics.

[17]  Robert Koch-Institut Infektionsepidemiologisches Jahrbuch meldepflichtiger Krankheiten für 2007 , 2008 .

[18]  Michael F. Goodchild,et al.  SIG y análisis espacial de datos: perspectivas convergentes , 2005 .

[19]  Antoni Moore,et al.  The trustree for the visualisation of attribute and spatial uncertainty: usability assessments , 2004 .

[20]  Bettina Speckmann,et al.  On rectangular cartograms , 2004, Comput. Geom..

[21]  Terry A. Slocum Thematic Cartography and Geographic Visualization , 2004 .

[22]  Jacek Malczewski,et al.  GIS-based land-use suitability analysis: a critical overview , 2004 .

[23]  P. Elliott,et al.  Spatial Epidemiology: Current Approaches and Future Challenges , 2004, Environmental health perspectives.

[24]  M. Rytkönen Not all maps are equal: GIS and spatial analysis in epidemiology , 2004, International journal of circumpolar health.

[25]  Michael T. Gastner,et al.  From The Cover: Diffusion-based method for producing density-equalizing maps. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[26]  Keith C. Clarke,et al.  Testing Popular Visualization Techniques for Representing Model Uncertainty , 2003 .

[27]  Cynthia A. Brewer,et al.  Evaluation of Methods for Classifying Epidemiological Data on Choropleth Maps in Series , 2002 .

[28]  Daniel A. Keim,et al.  Efficient cartogram generation: a comparison , 2002, IEEE Symposium on Information Visualization, 2002. INFOVIS 2002..

[29]  S. McLafferty,et al.  GIS and Public Health , 2002 .

[30]  Madelaine Norstrøm,et al.  Geographical Information System (GIS) as a Tool in Surveillance and Monitoring of Animal Diseases , 2001, Acta veterinaria Scandinavica. Supplementum.

[31]  Elisabeth S. Nelson,et al.  Visualizing Data Certainty: A Case Study Using Graduated Circle Maps , 2001 .

[32]  B. Buttenfield,et al.  Guidelines for the Display of Attribute Certainty , 2000 .

[33]  Elisabeth S. Nelson Designing Effective Bivariate Symbols: The Influence of Perceptual Grouping Processes , 2000 .

[34]  Alan M. MacEachren,et al.  Visualizing Georeferenced Data: Representing Reliability of Health Statistics , 1998 .

[35]  A. Agresti,et al.  Approximate is Better than “Exact” for Interval Estimation of Binomial Proportions , 1998 .

[36]  Cynthia A. Brewer,et al.  Beyond Graduated Circles: Varied Point Symbols for Representing Quantitative Data on Maps , 1998 .

[37]  Beverley J. Evans,et al.  Dynamic display of spatial data-reliability: does it benefit the map user? , 1997 .

[38]  Matthew McGranaghan A Cartographic View of Spatial Data Quality , 1993 .

[39]  Alan M. MacEachren,et al.  VISUALIZING UNCERTAIN INFORMATION , 1992 .

[40]  John B. Kidd,et al.  Judgement under Uncertainty: Heuristics and Biasses , 1983 .

[41]  P. Gilmartin INFLUENCES OF MAP CONTEXT ON CIRCLE PERCEPTION , 1981 .

[42]  Daniel G. Cole,et al.  OVERLAPPING GRADUATED CIRCLES / MAGNITUDE ESTIMATION AND METHOD OF PORTRAYAL , 1978 .

[43]  Judy M. Olson,et al.  Experience and the Improvement of Cartographic Communication , 1975 .

[44]  A. Tversky,et al.  Judgment under Uncertainty: Heuristics and Biases , 1974, Science.

[45]  George F. Jenks,et al.  ERROR ON CHOROPLETHIC MAPS: DEFINITION, MEASUREMENT, REDUCTION , 1971 .

[46]  A. Käsbohrer,et al.  Erreger von Zoonosen in Deutschland im Jahr 2015 , 2016 .

[47]  Sarah Rothstein,et al.  Mapping A Critical Introduction To Cartography And Gis , 2016 .

[48]  Efsa Publication,et al.  EFSA (European Food Safety Authority) and ECDC (European Centre for Disease Prevention and Control), 2015. The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2014 , 2015 .

[49]  Rodrigo Rodrigues Silveira Representación espacial y mapas , 2013 .

[50]  Ken Brodlie,et al.  A Review of Uncertainty in Data Visualization , 2012, Expanding the Frontiers of Visual Analytics and Visualization.

[51]  Elisabeth S. Nelson Choropleth Maps on High Resolution CRTs: The Effects of Number of Classes and Hue on Communication. , 2011 .

[52]  D. Heymann,et al.  Public health surveillance , 2011 .

[53]  Maria de Fátima de Pina,et al.  Epidemiología espacial: nuevos enfoques para viejas preguntas , 2010 .

[54]  Statistical analysis of temporal and spatial trends of zoonotic agents in animals and food Part I : Critical review of the statistical analysis carried out on the Community Summary Report 2006 data , 2009 .

[55]  Prosenjit Bose,et al.  On simplifying dot maps , 2004, Comput. Geom..

[56]  Tomislav Hengl,et al.  Pixel and colour mixture : GIS techniques for visualization of fuzziness and uncertainty of natural resource inventories , 2002 .

[57]  Jason Dykes,et al.  Maps of the Census : a rough guide , 1998 .

[58]  S. Altekruse,et al.  The changing epidemiology of foodborne diseases. , 1996, The American journal of the medical sciences.

[59]  Henk J. Scholten,et al.  An Introduction to Geographical Information Systems , 1995 .

[60]  Jeffrey S. Torguson,et al.  Cartography , 2019, Dictionary of Geotourism.

[61]  S. Lavin Mapping Continuous Geographical Distributions Using Dot-Density Shading , 1986 .

[62]  G. Jenks The Data Model Concept in Statistical Mapping , 1967 .