Extracellular DNA: A Major Proinflammatory Component of Pseudomonas aeruginosa Biofilms

We previously demonstrated that extracellular bacterial DNA activates neutrophils through a CpG- and TLR9-independent mechanism. Biofilms are microbial communities enclosed in a polymeric matrix that play a critical role in the pathogenesis of many infectious diseases. Because extracellular DNA is a key component of biofilms of different bacterial species, the aim of this study was to determine whether it plays a role in the ability of biofilms to induce human neutrophil activation. We found that degradation of matrix extracellular DNA with DNase I markedly reduced the capacity of Pseudomonas aeruginosa biofilms to induce the release of the neutrophil proinflammatory cytokines IL-8 and IL-1β (>75%); reduced the upregulation of neutrophil activation markers CD18, CD11b, and CD66b (p < 0.001); reduced the number of bacteria phagocytosed per neutrophil contacting the biofilm; and reduced the production of neutrophil extracellular traps. Consistent with these findings, we found that biofilms formed by the lasI rhlI P. aeruginosa mutant strain, exhibiting a very low content of matrix extracellular DNA, displayed a lower capacity to stimulate the release of proinflammatory cytokines by neutrophils, which was not decreased further by DNase I treatment. Together, our findings support that matrix extracellular DNA is a major proinflammatory component of P. aeruginosa biofilms.

[1]  W. Nauseef,et al.  Neutrophil Bleaching of GFP-Expressing Staphylococci: Probing the Intraphagosomal Fate of Individual Bacteria1 , 2009, The Journal of Immunology.

[2]  Zhijian J. Chen,et al.  RNA Polymerase III Detects Cytosolic DNA and Induces Type I Interferons through the RIG-I Pathway , 2009, Cell.

[3]  V. Hornung,et al.  RIG-I-dependent sensing of poly(dA:dT) through the induction of an RNA polymerase III–transcribed RNA intermediate , 2009, Nature Immunology.

[4]  Paul Stoodley,et al.  Evolving concepts in biofilm infections , 2009, Cellular microbiology.

[5]  Daniel R. Caffrey,et al.  AIM2 recognizes cytosolic dsDNA and forms a caspase-1 activating inflammasome with ASC , 2009, Nature.

[6]  J. Filep,et al.  Myeloperoxidase Delays Neutrophil Apoptosis Through CD11b/CD18 Integrins and Prolongs Inflammation , 2008, Circulation research.

[7]  L. Hancock,et al.  Regulation of Autolysis-Dependent Extracellular DNA Release by Enterococcus faecalis Extracellular Proteases Influences Biofilm Development , 2008, Journal of bacteriology.

[8]  Á. Zorreguieta,et al.  Characterization of bacterial DNA binding to human neutrophil surface , 2008, Laboratory Investigation.

[9]  Jeffrey B. Kaplan,et al.  Differential Roles of Poly-N-Acetylglucosamine Surface Polysaccharide and Extracellular DNA in Staphylococcus aureus and Staphylococcus epidermidis Biofilms , 2007, Applied and Environmental Microbiology.

[10]  B. Strandvik,et al.  Dornase alfa is well tolerated: Data from the Epidemiologic Registry of Cystic Fibrosis , 2007, Pediatric pulmonology.

[11]  J. L. Pozo,et al.  The Challenge of Treating Biofilm‐associated Bacterial Infections , 2007, Clinical pharmacology and therapeutics.

[12]  Zhiqiang Qin,et al.  Role of autolysin-mediated DNA release in biofilm formation of Staphylococcus epidermidis. , 2007, Microbiology.

[13]  P. Williams,et al.  Rapid necrotic killing of polymorphonuclear leukocytes is caused by quorum-sensing-controlled production of rhamnolipid by Pseudomonas aeruginosa. , 2007, Microbiology.

[14]  J. Jurcisek,et al.  Biofilms Formed by Nontypeable Haemophilus influenzae In Vivo Contain both Double-Stranded DNA and Type IV Pilin Protein , 2007, Journal of bacteriology.

[15]  K. Ishii,et al.  Innate immune recognition of, and regulation by, DNA. , 2006, Trends in immunology.

[16]  J. Bass,et al.  Neutrophil Signaling Pathways Activated by Bacterial DNA Stimulation1 , 2006, The Journal of Immunology.

[17]  Ernesto García,et al.  Biofilm Formation by Streptococcus pneumoniae: Role of Choline, Extracellular DNA, and Capsular Polysaccharide in Microbial Accretion , 2006, Journal of bacteriology.

[18]  David A. D'Argenio,et al.  Genetic adaptation by Pseudomonas aeruginosa to the airways of cystic fibrosis patients. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[19]  Carl Nathan,et al.  Neutrophils and immunity: challenges and opportunities , 2006, Nature Reviews Immunology.

[20]  S. Kjelleberg,et al.  A characterization of DNA release in Pseudomonas aeruginosa cultures and biofilms , 2006, Molecular microbiology.

[21]  P. Holden,et al.  Extracellular DNA in Single- and Multiple-Species Unsaturated Biofilms , 2005, Applied and Environmental Microbiology.

[22]  F. Petersen,et al.  DNA Binding-Uptake System: a Link between Cell-to-Cell Communication and Biofilm Formation , 2005, Journal of bacteriology.

[23]  K. Malcolm,et al.  Enhanced Pseudomonas aeruginosa Biofilm Development Mediated by Human Neutrophils , 2005, Infection and Immunity.

[24]  S. Molin,et al.  Pseudomonas aeruginosa tolerance to tobramycin, hydrogen peroxide and polymorphonuclear leukocytes is quorum-sensing dependent. , 2005, Microbiology.

[25]  Denise Lau,et al.  Myeloperoxidase mediates neutrophil activation by association with CD11b/CD18 integrins. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[26]  E. Greenberg,et al.  Putative Exopolysaccharide Synthesis Genes Influence Pseudomonas aeruginosa Biofilm Development , 2004, Journal of bacteriology.

[27]  U. Wahn,et al.  Effect of treatment with dornase alpha on airway inflammation in patients with cystic fibrosis. , 2004, American journal of respiratory and critical care medicine.

[28]  A. Zychlinsky,et al.  Neutrophil Extracellular Traps Kill Bacteria , 2004, Science.

[29]  Paul Stoodley,et al.  Bacterial biofilms: from the Natural environment to infectious diseases , 2004, Nature Reviews Microbiology.

[30]  M. Parsek,et al.  Bacterial biofilms: an emerging link to disease pathogenesis. , 2003, Annual review of microbiology.

[31]  P. Stewart,et al.  A genetic basis for Pseudomonas aeruginosa biofilm antibiotic resistance , 2003, Nature.

[32]  A. Chorny,et al.  Bacterial DNA activates human neutrophils by a CpG‐independent pathway , 2003, European journal of immunology.

[33]  A. Jesaitis,et al.  Compromised Host Defense on Pseudomonas aeruginosa Biofilms: Characterization of Neutrophil and Biofilm Interactions 1 , 2003, The Journal of Immunology.

[34]  S. Kjelleberg,et al.  Cell Death in Pseudomonas aeruginosa Biofilm Development , 2003, Journal of bacteriology.

[35]  K. Hirota,et al.  Effect of Varidase (Streptodornase) on Biofilm Formed by Pseudomonas aeruginosa , 2003, Chemotherapy.

[36]  S. Wuertz,et al.  Natural Genetic Transformation in Monoculture Acinetobacter sp. Strain BD413 Biofilms , 2003, Applied and Environmental Microbiology.

[37]  Roger S Smith,et al.  P. aeruginosa quorum-sensing systems and virulence. , 2003, Current opinion in microbiology.

[38]  L. Håvarstein,et al.  Induction of natural competence in Streptococcus pneumoniae triggers lysis and DNA release from a subfraction of the cell population , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[39]  H. Kuramitsu,et al.  Genetic exchange between Treponema denticola and Streptococcus gordonii in biofilms. , 2002, Oral microbiology and immunology.

[40]  Gerald B. Pier,et al.  Lung Infections Associated with Cystic Fibrosis , 2002, Clinical Microbiology Reviews.

[41]  J. Costerton,et al.  Biofilms: Survival Mechanisms of Clinically Relevant Microorganisms , 2002, Clinical Microbiology Reviews.

[42]  J. Mattick,et al.  Extracellular DNA required for bacterial biofilm formation. , 2002, Science.

[43]  B. Rubin,et al.  Sputum processing for evaluation of inflammatory mediators , 2001, Pediatric pulmonology.

[44]  S. Akira,et al.  A Toll-like receptor recognizes bacterial DNA , 2000, Nature.

[45]  J. Hancock,et al.  The inhibition of flavoproteins by phenoxaiodonium, a new iodonium analogue. , 2000, European journal of pharmacology.

[46]  P. Rieu,et al.  Neutrophils: Molecules, Functions and Pathophysiological Aspects , 2000, Laboratory Investigation.

[47]  D A Turner,et al.  Use of intrinsic optical signals to monitor physiological changes in brain tissue slices. , 1999, Methods.

[48]  J. Costerton,et al.  Bacterial biofilms: a common cause of persistent infections. , 1999, Science.

[49]  D. Steinberg,et al.  The effect of extracellular polysaccharides from Streptococcus mutans on the bactericidal activity of human neutrophils. , 1999, Archives of oral biology.

[50]  P. Gilbert,et al.  Biofilm Susceptibility to Antimicrobials , 1997, Advances in dental research.

[51]  K. Tanaka,et al.  A hierarchical quorum‐sensing cascade in Pseudomonas aeruginosa links the transcriptional activators LasR and RhIR (VsmR) to expression of the stationary‐phase sigma factor RpoS , 1996, Molecular microbiology.

[52]  V. Deretic,et al.  Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia. , 1996, Microbiological reviews.

[53]  M. Winson,et al.  Multiple homologues of LuxR and LuxI control expression of virulence determinants and secondary metabolites through quorum sensing in Pseudomonas aeruginosa PAO1 , 1995, Molecular microbiology.

[54]  M. Gambello,et al.  Expression of Pseudomonas aeruginosa virulence genes requires cell-to-cell communication. , 1993, Science.

[55]  N. Høiby,et al.  Role of alginate in infection with mucoid Pseudomonas aeruginosa in cystic fibrosis. , 1992, Thorax.

[56]  J. Costerton,et al.  Human polymorphonuclear leukocyte response to Pseudomonas aeruginosa grown in biofilms , 1990, Infection and immunity.

[57]  M. Plotkowski,et al.  Adherence of Pseudomonas aeruginosa to respiratory epithelium and the effect of leucocyte elastase. , 1989, Journal of medical microbiology.

[58]  B. Stollar,et al.  A rapid ELISA for measurement of antibodies to nucleic acid antigens using UV-treated polystyrene microplates. , 1986, Journal of immunological methods.

[59]  T. Murakawa Slime production by Pseudomonas aeruginosa. 3. Purification of slime and its physicochemical properties. , 1973, Japanese journal of microbiology.

[60]  T. Murakawa Slime production by Pseudomonas aeruginosa. IV. Chemical analysis of two varieties of slime produced by Pseudomonas aeruginosa. , 1973, Japanese journal of microbiology.

[61]  S. Goto,et al.  Slime production by Pseudomonas aeruginosa. I. Conditions for slime production by the cellophane plate method. , 1971, Japanese journal of microbiology.

[62]  J. Lieberman Inhibition of protease activity in purulent sputum by DNA. , 1967, The Journal of laboratory and clinical medicine.

[63]  K. Lewis Multidrug tolerance of biofilms and persister cells. , 2008, Current topics in microbiology and immunology.

[64]  G. O’Toole,et al.  Innate and induced resistance mechanisms of bacterial biofilms. , 2008, Current Topics in Microbiology and Immunology.

[65]  P. Stewart,et al.  Biofilms in chronic wounds , 2008, Wound repair and regeneration : official publication of the Wound Healing Society [and] the European Tissue Repair Society.

[66]  C. Coban,et al.  A Toll-like receptor–independent antiviral response induced by double-stranded B-form DNA , 2006, Nature Immunology.

[67]  S. Akira,et al.  TLR signaling. , 2006, Current topics in microbiology and immunology.

[68]  P Stoodley,et al.  Survival strategies of infectious biofilms. , 2005, Trends in microbiology.

[69]  R. Palmen,et al.  Acinetobacter calcoaceticus liberates chromosomal DNA during induction of competence by cell lysis , 2004, Current Microbiology.

[70]  G. O’Toole,et al.  Mechanisms of biofilm resistance to antimicrobial agents. , 2001, Trends in microbiology.

[71]  P. Watnick,et al.  Genetic approaches to study of biofilms. , 1999, Methods in enzymology.

[72]  村川 武雄 Slime production by Pseudomonas aeruginosa , 1974 .