Modelling Conditional Probability Densities with Neural Networks

[1]  Douglas A. Abraham Mathematical statistics , 2021, CSC '73.

[2]  Dirk Husmeier,et al.  Modeling Conditional Probabilities with Committees of RVFL Networks , 1997, ICANN.

[3]  Dirk Husmeier,et al.  A universal approximator network for learning conditional probability densities , 1997 .

[4]  G. Deco,et al.  An Information-Theoretic Approach to Neural Computing , 1997, Perspectives in Neural Computing.

[5]  Dirk Husmeier,et al.  Predicting Conditional Probability Densities of Stationary Stochastic Time Series , 1997, Neural Networks.

[6]  R. Tibshirani,et al.  Combining Estimates in Regression and Classification , 1996 .

[7]  Noboru Murata,et al.  An Integral Representation of Functions Using Three-layered Networks and Their Approximation Bounds , 1996, Neural Networks.

[8]  Christopher M. Bishop,et al.  Bayesian Inference of Noise Levels in Regression , 1996, ICANN.

[9]  Michael I. Jordan,et al.  Convergence results for the EM approach to mixtures of experts architectures , 1995, Neural Networks.

[10]  Volker Tresp,et al.  Improved Gaussian Mixture Density Estimates Using Bayesian Penalty Terms and Network Averaging , 1995, NIPS.

[11]  Steve R. Waterhouse,et al.  Bayesian Methods for Mixtures of Experts , 1995, NIPS.

[12]  Yoh-Han Pao,et al.  Stochastic choice of basis functions in adaptive function approximation and the functional-link net , 1995, IEEE Trans. Neural Networks.

[13]  Ashok N. Srivastava,et al.  Predicting conditional probability distributions: a connectionist approach , 1995, Int. J. Neural Syst..

[14]  Thorsteinn S. Rögnvaldsson On Langevin Updating in Multilayer Perceptrons , 1994, Neural Computation.

[15]  Anders Krogh,et al.  Introduction to the theory of neural computation , 1994, The advanced book program.

[16]  A. Weigend,et al.  Time Series Prediction: Forecasting the Future and Understanding the Past , 1994 .

[17]  Ralph Neuneier,et al.  Estimation of Conditional Densities: A Comparison of Neural Network Approaches , 1994 .

[18]  Ashok N. Srivastava,et al.  Computing the probability density in connectionist regression , 1994, Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94).

[19]  D. W. Allen,et al.  Learning Time Series by Neural Networks , 1994 .

[20]  Dejan J. Sobajic,et al.  Learning and generalization characteristics of the random vector Functional-link net , 1994, Neurocomputing.

[21]  Roberto Battiti,et al.  Democracy in neural nets: Voting schemes for classification , 1994, Neural Networks.

[22]  Robert A. Jacobs,et al.  Hierarchical Mixtures of Experts and the EM Algorithm , 1993, Neural Computation.

[23]  H. Zimmermann,et al.  Original Contribution: Improving model selection by nonconvergent methods , 1993 .

[24]  Andrew R. Barron,et al.  Universal approximation bounds for superpositions of a sigmoidal function , 1993, IEEE Trans. Inf. Theory.

[25]  David H. Wolpert,et al.  On the Use of Evidence in Neural Networks , 1992, NIPS.

[26]  Gerhard Paass,et al.  Assessing and Improving Neural Network Predictions by the Bootstrap Algorithm , 1992, NIPS.

[27]  A. Passamante,et al.  Using neural nets to look for chaos , 1992 .

[28]  David J. C. MacKay,et al.  Bayesian Interpolation , 1992, Neural Computation.

[29]  David J. C. MacKay,et al.  A Practical Bayesian Framework for Backpropagation Networks , 1992, Neural Computation.

[30]  Elie Bienenstock,et al.  Neural Networks and the Bias/Variance Dilemma , 1992, Neural Computation.

[31]  John E. Moody,et al.  Principled Architecture Selection for Neural Networks: Application to Corporate Bond Rating Prediction , 1991, NIPS.

[32]  Steven J. Nowlan,et al.  Soft competitive adaptation: neural network learning algorithms based on fitting statistical mixtures , 1991 .

[33]  Kurt Hornik,et al.  Approximation capabilities of multilayer feedforward networks , 1991, Neural Networks.

[34]  R. Devaney An Introduction to Chaotic Dynamical Systems , 1990 .

[35]  Kurt Hornik,et al.  Multilayer feedforward networks are universal approximators , 1989, Neural Networks.

[36]  John G. Proakis,et al.  Probability, random variables and stochastic processes , 1985, IEEE Trans. Acoust. Speech Signal Process..

[37]  B. Efron,et al.  A Leisurely Look at the Bootstrap, the Jackknife, and , 1983 .

[38]  P. Grassberger,et al.  Characterization of Strange Attractors , 1983 .

[39]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[40]  G. C. Tiao,et al.  Bayesian inference in statistical analysis , 1973 .

[41]  M. Degroot Optimal Statistical Decisions , 1970 .

[42]  E. Parzen On Estimation of a Probability Density Function and Mode , 1962 .

[43]  Dirk Husmeier,et al.  Neural Networks for Predicting Conditional Probability Densities: Improved Training Scheme Combining EM and RVFL , 1998, Neural Networks.

[44]  A. Krogh,et al.  Statistical mechanics of ensemble learning , 1997 .

[45]  Dirk Husmeier,et al.  Predicting Conditional Probability Densities with the Gaussian Mixture - RVFL Network , 1997, ICANNGA.

[46]  D. Mackay,et al.  HYPERPARAMETERS: OPTIMIZE, OR INTEGRATE OUT? , 1996 .

[47]  David J. C. MacKay,et al.  BAYESIAN NON-LINEAR MODELING FOR THE PREDICTION COMPETITION , 1996 .

[48]  Hans Henrik Thodberg,et al.  A review of Bayesian neural networks with an application to near infrared spectroscopy , 1996, IEEE Trans. Neural Networks.

[49]  Robert Tibshirani,et al.  A Comparison of Some Error Estimates for Neural Network Models , 1996, Neural Computation.

[50]  David J. C. MacKay,et al.  Bayesian Methods for Backpropagation Networks , 1996 .

[51]  David H. Wolpert,et al.  What Bayes has to Say about the Evidence Procedure , 1996 .

[52]  Dirk Husmeier,et al.  A neural network approach to predicting noisy time series , 1996 .

[53]  Radford M. Neal Bayesian learning for neural networks , 1995 .

[54]  David J. C. MacKay,et al.  Developments in Probabilistic Modelling with Neural Networks - Ensemble Learning , 1995, SNN Symposium on Neural Networks.

[55]  N. E. Sharkey,et al.  Diversity , Neural Nets and Safety Critical Applications , 1995 .

[56]  Noel E. Sharkey,et al.  Neural Nets and Diversity , 1995, SAFECOMP.

[57]  Noel E. Sharkey,et al.  How to Improve the Reliability of Artificial Neural Networks , 1995 .

[58]  Anders Krogh,et al.  Neural Network Ensembles, Cross Validation, and Active Learning , 1994, NIPS.

[59]  C. Bishop Mixture density networks , 1994 .

[60]  A. Weigend,et al.  Predictions with Confidence Intervals (Local Error Bars) ; CU-CS-724-94 , 1994 .

[61]  Adrian J. Shepherd,et al.  A CLASSICAL ALGORITHM FOR AVOIDING LOCAL MINIMA , 1994 .

[62]  Heekuck Oh,et al.  Neural Networks for Pattern Recognition , 1993, Adv. Comput..

[63]  J. D. Farmer,et al.  A Theory of State Space Reconstruction in the Presence of Noise , 1991 .

[64]  Donald F. Specht,et al.  Probabilistic neural networks , 1990, Neural Networks.

[65]  Gottfried Jetschke,et al.  Mathematik der Selbstorganisation , 1989 .

[66]  S. Gull Bayesian Inductive Inference and Maximum Entropy , 1988 .

[67]  F. Takens Detecting strange attractors in turbulence , 1981 .