Finite-element simulation of the lateral compression of aluminium tube between rigid plates

Abstract The lateral compression of aluminium and clad tubes owing to a large deformation is examined by an incremental elasto-plastic finite-element method based on an updated Lagrangian formulation in which a sliding-sticking friction mode is specially considered. It is mainly expected to predict the buckling process and load–deflection curves for energy dissipation capacity during the design stage, before trials. The high non-linearity of the process due to geometric changes, the inelastic constitutive behavior, and the deformation-dependent boundary conditions are taken into account in an incremental manner. A static explicit approach to the solution is applied, tangent stiffness matrix equation is solved without iteration and the rmin technique is employed to limit the step size to linear relation. The simulated load–deflection curve agrees with a published experimental result. The predicted geometries of the compressed tube clearly demonstrate the processes of the formation of buckling until unloading. The effects of various parameters of the process, such as elastic modulus, strain hardening exponent, tube thickness, friction coefficient and configurations of the clad tube, on the occurrence of buckling of tube are discussed and interpreted in simulation. The present work may be expected to improve the understanding of the buckling mechanism of lateral compression.