Large Wind Turbine Rotor Design using an Aero-Elastic / Free-Wake Panel Coupling Code

Despite the advances in computing resources in the recent years, the majority of large wind-turbine rotor design problems still rely on aero-elastic codes that use blade element momentum (BEM) approaches to model the rotor aerodynamics. The present work describes an approach to wind-turbine rotor design by incorporating a higher-fidelity free-wake panel aero-elastic coupling code called MIRAS-FLEX. The optimization procedure includes a series of design load cases and a simple structural design code. Due to the heavy MIRAS-FLEX computations, a surrogate-modeling approach is applied to mitigate the overall computational cost of the optimization. Improvements in cost of energy, annual energy production, maximum flap-wise root bending moment, and blade mass were obtained for the NREL 5MW baseline wind turbine.

[1]  J. Peinke,et al.  The Science of Making Torque from Wind (TORQUE 2016) , 2014 .

[2]  Néstor Ramos-García,et al.  Development of a Fast Fluid-Structure Coupling Technique for Wind Turbine Computations , 2015 .

[3]  Helge Aagaard Madsen,et al.  Optimization method for wind turbine rotors , 1999 .

[4]  Néstor Ramos-García,et al.  Three-dimensional viscous-inviscid coupling method for wind turbine computations , 2016 .

[5]  Carlo L. Bottasso,et al.  Multi-disciplinary constrained optimization of wind turbines , 2010 .

[6]  Niels N. Sørensen,et al.  Inboard rotor/blade aerodynamics and its influence on blade design , 2006 .

[7]  P. B. S. Lissaman,et al.  Applied Aerodynamics of Wind Power Machines , 1974, Renewable Energy.

[8]  Andy J. Keane,et al.  Engineering Design via Surrogate Modelling - A Practical Guide , 2008 .

[9]  N. Jenkins,et al.  Wind Energy Handbook: Burton/Wind Energy Handbook , 2011 .

[10]  Niels N. Sørensen,et al.  3D Navier-Stokes Simulations of a rotor designed for Maximum Aerodynamic Efficiency , 2007 .

[11]  Les A. Piegl,et al.  The NURBS Book , 1995, Monographs in Visual Communication.

[12]  Les A. Piegl,et al.  The NURBS book (2nd ed.) , 1997 .

[13]  Joaquim R. R. A. Martins,et al.  Multidisciplinary design optimization of offshore wind turbines for minimum levelized cost of energy , 2014 .

[14]  Tim Cockerill,et al.  Site-specific design optimization of wind turbines , 1998 .

[15]  Christos Kassapoglou Buckling of Composite Plates , 2010 .

[16]  M. Drela XFOIL: An Analysis and Design System for Low Reynolds Number Airfoils , 1989 .

[17]  Michael S. Selig,et al.  BLADE GEOMETRY OPTIMIZATION FOR THE DESIGN OF WIND TURBINE ROTORS , 2000 .

[18]  J. Jonkman,et al.  Definition of a 5-MW Reference Wind Turbine for Offshore System Development , 2009 .

[19]  M. Hand,et al.  Wind Turbine Design Cost and Scaling Model , 2006 .

[20]  C. P. van Dam,et al.  Innovative Design Approaches for Large Wind Turbine Blades , 2005 .

[21]  Néstor Ramos-García,et al.  A strong viscous-inviscid interaction model for rotating airfoils , 2014 .

[22]  James L. Tangler,et al.  The Evolution of Rotor and Blade Design , 2000 .

[23]  G. S. Bir,et al.  User's Guide to PreComp (Pre-Processor for Computing Composite Blade Properties) , 2006 .

[24]  Néstor Ramos-García,et al.  Aerodynamic wind-turbine rotor design using surrogate modeling and three-dimensional viscous–inviscid interaction technique , 2016 .

[25]  Andreas Krumbein,et al.  Automatic Transition Prediction and Application to 3D Wing Configurations – Current Status of Development and Validation , 2005 .

[26]  Brian Ray Resor,et al.  Definition of a 5MW/61.5m wind turbine blade reference model. , 2013 .

[27]  Poul Ejnar Sørensen,et al.  Control design for a pitch-regulated, variable speed wind turbine , 2005 .