Dynamic simulation of liquid-filled flexible multibody systems via absolute nodal coordinate formulation and SPH method

A new computation method is proposed to study the coupled dynamics of a partially liquid-filled flexible multibody system, where the liquid is modeled by using the Smoothed Particle Hydrodynamics (SPH) method and the flexible bodies are described by using the Absolute Nodal Coordinate Formulation (ANCF). Extra virtual particles are introduced and embedded in the liquid neighboring the rigid or flexible boundaries in order to prevent field particles from penetrating the boundary and force them to follow the deformation of flexible boundary. The interaction forces between the liquid and the flexible multibody system are transmitted by the virtual particles. The domain decomposition is used to improve the efficiency of interaction detection in SPH computation. A predictor-corrector scheme is used to solve the governing equations of liquid discretized by SPH particles. The generalized-alpha method based on sparse matrix storage skill is used to solve a huge set of dynamic equations of the multibody system. The OpenMP+OpenACC based parallel computation skills are embedded in the iteration processes to speed up the computation efficiency. Finally, three numerical examples are given to validate the proposed computation method.

[1]  A. Shabana,et al.  A two-loop sparse matrix numerical integration procedure for the solution of differential/algebraic equations: Application to multibody systems , 2009 .

[2]  K. Sinhamahapatra,et al.  Slosh dynamics of inviscid fluids in two‐dimensional tanks of various geometry using finite element method , 2008 .

[3]  G. Batchelor,et al.  An Introduction to Fluid Dynamics , 1968 .

[4]  N. Ananthkrishnan,et al.  Stability analysis of a multibody system model for coupled slosh-vehicle dynamics , 2004 .

[5]  C. Liu,et al.  ElastoHydroDynamic lubricated cylindrical joints for rigid-flexible multibody dynamics , 2013 .

[6]  J. Monaghan Smoothed particle hydrodynamics , 2005 .

[7]  Baozeng Yue,et al.  Study on the Chaotic Dynamics in Attitude Maneuver of Liquid-Filled Flexible Spacecraft , 2011 .

[8]  A. Shabana,et al.  Sparse matrix implicit numerical integration of the Stiff differential/algebraic equations: Implementation , 2011 .

[9]  Johannes Gerstmayr,et al.  Interaction of flexible multibody systems with fluids analyzed by means of smoothed particle hydrodynamics , 2013 .

[10]  A. Shabana,et al.  Use of the Finite Element Absolute Nodal Coordinate Formulation in Modeling Slope Discontinuity , 2003 .

[11]  Yue Baozeng,et al.  Heteroclinic bifurcations in completely liquid-filled spacecraft with flexible appendage , 2007 .

[12]  Y. Amini,et al.  A new model to solve fluid–hypo-elastic solid interaction using the smoothed particle hydrodynamics (SPH) method , 2011 .

[13]  Ahmed A. Shabana,et al.  Dynamics of Multibody Systems , 2020 .

[14]  Aki Mikkola,et al.  A Non-Incremental Finite Element Procedure for the Analysis of Large Deformation of Plates and Shells in Mechanical System Applications , 2003 .

[15]  R. Y. Yakoub,et al.  Three Dimensional Absolute Nodal Coordinate Formulation for Beam Elements: Theory , 2001 .

[16]  Margarida F. Machado,et al.  A new model for dry and lubricated cylindrical joints with clearance in spatial flexible multibody systems , 2011 .

[17]  Benedict D. Rogers,et al.  Numerical Modeling of Water Waves with the SPH Method , 2006 .

[18]  M. Gómez-Gesteira,et al.  Boundary conditions generated by dynamic particles in SPH methods , 2007 .

[19]  C. Liu,et al.  New spatial curved beam and cylindrical shell elements of gradient-deficient Absolute Nodal Coordinate Formulation , 2012 .

[20]  Jie Ouyang,et al.  SPH simulations of three-dimensional non-Newtonian free surface flows , 2013 .

[21]  C. W. Hirt,et al.  Volume of fluid (VOF) method for the dynamics of free boundaries , 1981 .

[22]  Just L. Herder,et al.  Design of a Statically Balanced Tensegrity Mechanism , 2006 .

[23]  Jingzhou Yang,et al.  An Efficient Hybrid Method for Multibody Dynamics Simulation Based on Absolute Nodal Coordinate Formulation , 2009 .

[24]  A. Shabana,et al.  Implicit and explicit integration in the solution of the absolute nodal coordinate differential/algebraic equations , 2008 .

[25]  J. Monaghan On the problem of penetration in particle methods , 1989 .

[26]  Qiang Tian,et al.  Dynamics and control of a spatial rigid-flexible multibody system with multiple cylindrical clearance joints , 2012 .

[27]  Jintai Chung,et al.  A Time Integration Algorithm for Structural Dynamics With Improved Numerical Dissipation: The Generalized-α Method , 1993 .

[28]  J. Monaghan,et al.  A refined particle method for astrophysical problems , 1985 .

[29]  Seiichi Koshizuka,et al.  Fluid-shell structure interaction analysis by coupled particle and finite element method , 2007 .

[30]  Hammad Mazhar,et al.  Leveraging parallel computing in multibody dynamics , 2012 .

[31]  Arthur Veldman,et al.  Dynamics of liquid-filled spacecraft , 2003 .

[32]  Miguel Hermanns,et al.  Parallel Programming in Fortran 95 using OpenMP , 2002 .

[33]  Daniel J. Price Smoothed particle hydrodynamics and magnetohydrodynamics , 2010, J. Comput. Phys..

[34]  M. Arnold,et al.  Convergence of the generalized-α scheme for constrained mechanical systems , 2007 .

[35]  W. Rumold Modeling and Simulation of Vehicles Carrying Liquid Cargo , 2001 .

[36]  Michele Meo,et al.  SPH – Lagrangian study of bird impact on leading edge wing , 2011 .

[37]  Guirong Liu,et al.  Smoothed Particle Hydrodynamics: A Meshfree Particle Method , 2003 .

[38]  Guirong Liu Mesh Free Methods: Moving Beyond the Finite Element Method , 2002 .

[39]  Subhash Rakheja,et al.  Steady Turning Stability of Partially Filled Tank Vehicles With Arbitrary Tank Geometry , 1989 .

[40]  Ahmed A. Shabana,et al.  Computational Dynamics, Third Edition , 2009 .

[41]  C. Antoci,et al.  Numerical simulation of fluid-structure interaction by SPH , 2007 .

[42]  J. Monaghan Simulating Free Surface Flows with SPH , 1994 .

[43]  L. Lucy A numerical approach to the testing of the fission hypothesis. , 1977 .

[44]  G. R. Johnson,et al.  SPH for high velocity impact computations , 1996 .

[45]  Peter Eberhard,et al.  Dynamic simulation of sloshing fluid and granular cargo in transport vehicles , 2010 .

[46]  G. Dilts MOVING-LEAST-SQUARES-PARTICLE HYDRODYNAMICS-I. CONSISTENCY AND STABILITY , 1999 .

[47]  Zhang A-Man,et al.  Numerical simulation of underwater contact explosion , 2012 .

[48]  Valery N. Pilipchuk,et al.  Recent Advances in Liquid Sloshing Dynamics , 2001 .

[49]  Dong Yan,et al.  Dynamic analysis of membrane systems undergoing overall motions, large deformations and wrinkles via thin shell elements of ANCF , 2013 .

[50]  S. Rebouillat,et al.  Fluid–structure interaction in partially filled liquid containers: A comparative review of numerical approaches , 2010 .

[51]  Benedict D. Rogers,et al.  SPHysics - development of a free-surface fluid solver - Part 1: Theory and formulations , 2012, Comput. Geosci..

[52]  R. Y. Yakoub,et al.  Three Dimensional Absolute Nodal Coordinate Formulation for Beam Elements: Implementation and Applications , 2001 .

[53]  V. Springel Smoothed Particle Hydrodynamics in Astrophysics , 2010, 1109.2219.

[54]  J. Monaghan Why Particle Methods Work , 1982 .

[55]  J. Monaghan,et al.  Smoothed particle hydrodynamics: Theory and application to non-spherical stars , 1977 .

[56]  J. Monaghan,et al.  Solitary Waves on a Cretan Beach , 1999 .

[57]  Yunqing Zhang,et al.  Simulation of planar flexible multibody systems with clearance and lubricated revolute joints , 2010 .

[58]  José Ortiz Modeling flexible multibody systems-fluid interaction , 1996 .

[59]  Roel Luppes,et al.  The numerical simulation of liquid sloshing on board spacecraft , 2007, J. Comput. Phys..

[60]  Qiang Tian,et al.  Dynamics of a large scale rigid–flexible multibody system composed of composite laminated plates , 2011 .

[61]  A. Colagrossi,et al.  Numerical simulation of interfacial flows by smoothed particle hydrodynamics , 2003 .

[62]  W. Yoo,et al.  Review of Finite Elements Using Absolute Nodal Coordinates for Large-Deformation Problems and Matching Physical Experiments , 2005 .

[63]  Q. Tian,et al.  Simple formulations of imposing moments and evaluating joint reaction forces for rigid-flexible multibody systems , 2012 .

[64]  R. Ibrahim Liquid Sloshing Dynamics: Theory and Applications , 2005 .

[65]  Raouf A. Ibrahim,et al.  Overview of Mechanics of Pipes Conveying Fluids—Part I: Fundamental Studies , 2010 .

[66]  R. Robinett,et al.  Flexible multibody systems–fluid interaction , 1998 .

[67]  Werner Schiehlen,et al.  Research trends in multibody system dynamics , 2007 .