Atomistic Modeling of Sulfur Vacancy Diffusion Near Iron Pyrite Surfaces

Through density functional calculations, we investigated the diffusion of isolated sulfur vacancies (VS) from the bulk of iron pyrite (cubic FeS2) to the (100) and (111) surfaces. The influence of vacancy depth on the vacancy formation energy and the activation energy for vacancy diffusion are discussed. Significantly, we find that VS defects tend to migrate toward stoichiometric and sulfur-rich surfaces through sequential “intra-dimer” and “inter-dimer” hops. We find a pre-exponential constant (D0) of 9 × 10–7 m2 s–1 and an activation energy (E) of 1.95 eV for sulfur vacancy diffusion in bulk pyrite, corresponding to a vacancy diffusion coefficient DV = D0 exp(−E/kT) = 9 × 10–40 m2 s–1 at 25 °C and 5 × 10–18 m2 s–1 at 600 °C. The activation energy is smaller near the surface (e.g., E = 1.5 eV near the stoichiometric (100) surface), resulting in faster vacancy diffusion near the surface than in the bulk. Using the formation enthalpy of VS at the (100) surface, E = 2.37 eV, we find a sulfur diffusivity in ...

[1]  M. Law,et al.  An inversion layer at the surface of n-type iron pyrite , 2014 .

[2]  K. V. Van Vliet,et al.  Electronic states of intrinsic surface and bulk vacancies in FeS2 , 2013, Journal of physics. Condensed matter : an Institute of Physics journal.

[3]  C. Stoldt,et al.  Iron pyrite nanocubes: size and shape considerations for photovoltaic application. , 2012, ACS nano.

[4]  M. Law,et al.  Atmospheric‐Pressure Chemical Vapor Deposition of Iron Pyrite Thin Films , 2012 .

[5]  M. Law,et al.  Increasing the band gap of iron pyrite by alloying with oxygen. , 2012, Journal of the American Chemical Society.

[6]  N. Newman,et al.  Defect energy levels and electronic behavior of Ni-, Co-, and As-doped synthetic pyrite (FeS2) , 2012 .

[7]  Chin-Lung Kuo,et al.  First principles study of the oxygen vacancy formation and the induced defect states in hafnium silicates , 2012 .

[8]  R. Hamers,et al.  Synthesis and properties of semiconducting iron pyrite (FeS2) nanowires. , 2012, Nano letters.

[9]  M. Law,et al.  Effect of surface stoichiometry on the band gap of the pyrite FeS2(100) surface , 2012 .

[10]  M. Law,et al.  First-principles studies of the electronic properties of native and substitutional anionic defects in bulk iron pyrite , 2012 .

[11]  G. Ceder,et al.  Feasibility of band gap engineering of pyrite FeS , 2011 .

[12]  A. Zunger,et al.  Iron Chalcogenide Photovoltaic Absorbers , 2011 .

[13]  G. Ceder,et al.  Intrinsic stoichiometry and oxygen-induced p -type conductivity of pyrite FeS 2 , 2011 .

[14]  M. Yoshiya,et al.  Impurity and vacancy segregation at symmetric tilt grain boundaries in Y2O3-doped ZrO2 , 2011 .

[15]  D. Alfonso Computational Investigation of FeS2 Surfaces and Prediction of Effects of Sulfur Environment on Stabilities , 2010 .

[16]  R. Ramprasad,et al.  Point defect chemistry in amorphous HfO 2 : Density functional theory calculations , 2010 .

[17]  Anton Van der Ven,et al.  Vacancy mediated substitutional diffusion in binary crystalline solids , 2010 .

[18]  S. C. Parker,et al.  Oxygen vacancy diffusion in alumina: New atomistic simulation methods applied to an old problem , 2009 .

[19]  E. Watson,et al.  Retention of biosignatures and mass-independent fractionations in pyrite: Self-diffusion of sulfur , 2009 .

[20]  Chong-yu Wang,et al.  First-principles study of diffusion of oxygen vacancies and interstitials in ZnO , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[21]  E. Carter,et al.  Energetics and kinetics of vacancy diffusion and aggregation in shocked aluminium via orbital-free density functional theory. , 2007, Physical chemistry chemical physics : PCCP.

[22]  Rampi Ramprasad,et al.  Diffusion of O vacancies nearSi:HfO2interfaces: Anab initioinvestigation , 2007 .

[23]  S. Russo,et al.  Shape and thermodynamic stability of pyrite FeS2 nanocrystals and nanorods , 2007 .

[24]  M. Parrinello,et al.  Defective pyrite (100) surface: An ab initio study , 2007 .

[25]  Hideo Kaburaki,et al.  Grain Boundary Decohesion by Impurity Segregation in a Nickel-Sulfur System , 2005, Science.

[26]  S. Fiechter Defect formation energies and homogeneity ranges of rock salt-, pyrite-, chalcopyrite- and molybdenite-type compound semiconductors , 2004 .

[27]  M. R. Philpott,et al.  Molecular dynamics simulation of water in a contact with an iron pyrite FeS2 surface. , 2004, The Journal of chemical physics.

[28]  K. Rosso,et al.  Surface defects and self-diffusion on pyrite {100}: An ultra-high vacuum scanning tunneling microscopy and theoretical modeling study , 2000 .

[29]  A. Freeman,et al.  Embrittling and strengthening effects of hydrogen, boron, and phosphorus on a Σ5 nickel grain boundary , 1999 .

[30]  M. Schoonen,et al.  Photoemission of Adsorbed Xenon, X-ray Photoelectron Spectroscopy, and Temperature-Programmed Desorption Studies of H2O on FeS2(100) , 1998 .

[31]  C. Humphreys,et al.  Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study , 1998 .

[32]  Georg Kresse,et al.  Ab initio density functional studies of transition-metal sulphides: I. Crystal structure and cohesive properties , 1997 .

[33]  G. Kresse,et al.  Ab initio density functional studies of transition-metal sulphides: II. Electronic structure , 1997 .

[34]  A. Lichtenstein,et al.  First-principles calculations of electronic structure and spectra of strongly correlated systems: the LDA+U method , 1997 .

[35]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[36]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[37]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[38]  W. Jaegermann,et al.  Surface photovoltage measurements on pyrite (100) cleavage planes: Evidence for electronic bulk defects , 1994 .

[39]  W. Jaegermann,et al.  Surface states on cubic d-band semiconductor pyrite (FeS2) , 1994 .

[40]  A. Ennaoui,et al.  Iron disulfide for solar energy conversion , 1993 .

[41]  N. Alonso‐Vante,et al.  Photovoltaic output limitation of n‐FeS2 (pyrite) Schottky barriers: A temperature‐dependent characterization , 1992 .

[42]  K. Wandelt,et al.  Quantitative aspects of ultraviolet photoemission of adsorbed xenon—a review , 1991 .

[43]  Hartmann,et al.  Sulfur deficiency in iron pyrite (FeS2-x) and its consequences for band-structure models. , 1991, Physical review. B, Condensed matter.

[44]  V. Antonucci,et al.  Photoactive screen-printed pyrite anodes for electrochemical photovoltaic cells , 1991 .

[45]  S. Fiechter,et al.  Electrical properties of natural and synthetic pyrite (FeS_2) crystals , 1990 .

[46]  A. Ennaoui,et al.  Chemical vapour transport of pyrite (FeS2) with halogen (Cl, Br, I) , 1986 .

[47]  E. Elcock Vacancy Diffusion in Ordered Alloys , 1959 .

[48]  Shenqiang Ren,et al.  Thermodynamic control of iron pyrite nanocrystal synthesis with high photoactivity and stability , 2013 .

[49]  D. Strongin,et al.  Surface reactivity of pyrite and related sulfides , 2009 .

[50]  S. Fiechter,et al.  Stoichiometry and impurity concentration in synthetically grown iron pyrite crystals and their constituents , 1989 .

[51]  W. Jaegermann,et al.  Photoelectrochemistry of Highly Quantum Efficient Single‐Crystalline n ‐ FeS2 (Pyrite) , 1986 .

[52]  G. Vineyard Frequency factors and isotope effects in solid state rate processes , 1957 .