THE FUNDAMENTAL PLANE OF THE BROAD-LINE REGION IN ACTIVE GALACTIC NUCLEI

Broad emission lines in active galactic nuclei (AGNs) mainly arise from gas photoionized by continuum radiation from an accretion disk around a central black hole. The shape of the broad-line profile, described by ${\cal D}_{_{\rm H\beta}}={\rm FWHM}/\sigma_{_{\rm H\beta}}$, the ratio of full width at half maximum to the dispersion of broad H$\beta$, reflects the dynamics of the broad-line region (BLR) and correlates with the dimensionless accretion rate ($\dot{\mathscr{M}}$) or Eddington ratio ($L_{\rm bol}/L_{\rm Edd}$). At the same time, $\dot{\mathscr{M}}$ and $L_{\rm bol}/L_{\rm Edd}$ correlate with ${\cal R}_{\rm Fe}$, the ratio of optical Fe II to H$\beta$ line flux emission. Assembling all AGNs with reverberation mapping measurements of broad H$\beta$, both from the literature and from new observations reported here, we find a strong bivariate correlation of the form $\log(\dot{\mathscr{M}},L_{\rm bol}/L_{\rm Edd})=\alpha+\beta{\cal D}_{_{\rm H\beta}}+\gamma{\cal R}_{\rm Fe},$ where $\alpha=(2.47,0.31)$, $\beta=-(1.59,0.82)$ and $\gamma=(1.34,0.80)$. We refer to this as the fundamental plane of the BLR. We apply the plane to a sample of $z < 0.8$ quasars to demonstrate the prevalence of super-Eddington accreting AGNs are quite common at low redshifts.

[1]  Chen Hu,et al.  SUPERMASSIVE BLACK HOLES WITH HIGH ACCRETION RATES IN ACTIVE GALACTIC NUCLEI. IV. Hβ TIME LAGS AND IMPLICATIONS FOR SUPER-EDDINGTON ACCRETION , 2015, 1504.01844.

[2]  Paul S. Smith,et al.  Reverberation Measurements for 17 Quasars and the Size-Mass-Luminosity Relations in Active Galactic Nuclei , 1999 .

[3]  Astrophysics,et al.  SUPERMASSIVE BLACK HOLES WITH HIGH ACCRETION RATES IN ACTIVE GALACTIC NUCLEI. III. DETECTION OF Fe ii REVERBERATION IN NINE NARROW-LINE SEYFERT 1 GALAXIES , 2015, 1503.03611.

[4]  M. Elvis,et al.  THE SLOAN DIGITAL SKY SURVEY/XMM-NEWTON QUASAR SURVEY: CORRELATION BETWEEN X-RAY SPECTRAL SLOPE AND EDDINGTON RATIO , 2009, 0906.1983.

[5]  B. Wilkes,et al.  The Soft X-Ray Properties of a Complete Sample of Optically Selected Quasars. II. Final Results , 1994, astro-ph/9609164.

[6]  Bradley M. Peterson,et al.  Supermassive Black Holes in Active Galactic Nuclei. II. Calibration of the Black Hole Mass-Velocity Dispersion Relationship for Active Galactic Nuclei , 2004 .

[7]  The soft x-ray properties of a complete sample of optically selected quasars. 1: First results , 1994, astro-ph/9609164.

[8]  D. N. Okhmat,et al.  REVERBERATION MAPPING RESULTS FOR FIVE SEYFERT 1 GALAXIES , 2012, 1206.6523.

[9]  C. D. Laney,et al.  THE LICK AGN MONITORING PROJECT 2011: Fe ii REVERBERATION FROM THE OUTER BROAD-LINE REGION , 2013, 1304.4643.

[10]  L. Ho,et al.  A Systematic Analysis of Fe II Emission in Quasars: Evidence for Inflow to the Central Black Hole , 2008, 0807.2059.

[11]  S. Mineshige,et al.  The Hot Disk Corona and Magnetic Turbulence in Radio-quiet Active Galactic Nuclei: Observational Constraints , 2004, astro-ph/0407160.

[12]  H. Netzer,et al.  Massive thin accretion discs – I. Calculated spectra , 1989 .

[13]  A Fundamental plane of black hole activity , 2003, astro-ph/0305261.

[14]  Chen Hu,et al.  SUPERMASSIVE BLACK HOLES WITH HIGH ACCRETION RATES IN ACTIVE GALACTIC NUCLEI. II. THE MOST LUMINOUS STANDARD CANDLES IN THE UNIVERSE , 2014, 1408.2337.

[15]  C. Done,et al.  A combined Optical and X-ray Spectra Study for Type 1 AGN. III. Broadband SED Properties , 2012, 1205.1846.

[16]  Broad-line active galactic nuclei rotate faster than narrow-line ones , 2011, Nature.

[17]  M. Mouchet,et al.  Are quasars accreting at super-Eddington rates? , 2002, astro-ph/0203439.

[18]  T. Boroson,et al.  The Emission-Line Properties of Low-Redshift Quasi-stellar Objects , 1992 .

[19]  L. Ho,et al.  The diversity of quasars unified by accretion and orientation , 2014, Nature.

[20]  M. Malkan,et al.  Fitting improved accretion disk models to the multiwavelength continua of quasars and active galactic nuclei , 1989 .

[21]  Astrophysics,et al.  THE BLACK HOLE MASS SCALE OF CLASSICAL AND PSEUDO BULGES IN ACTIVE GALAXIES , 2014, 1406.6137.

[22]  Jian-Min Wang,et al.  Self-similar Solution of Optically Thick Advection-dominated Flows , 1999 .

[23]  Andrew King,et al.  Accretion Power in Astrophysics: Contents , 2002 .

[24]  Systematic effects in measurement of black hole masses by emission-line reverberation of active galactic nuclei: Eddington ratio and inclination , 2006, astro-ph/0603460.

[25]  Reverberation Mapping of the Seyfert 1 Galaxy NGC 7469 , 2014, 1409.4448.

[26]  P. Veron,et al.  A spectrophotometric atlas of narrow-line seyfert 1 galaxies , 2001 .

[27]  L. Ho,et al.  WHAT CONTROLS THE Fe ii STRENGTH IN ACTIVE GALACTIC NUCLEI? , 2009, 0903.5020.

[28]  Granada,et al.  Detailed characterization of Hβ emission line profile in low‐z SDSS quasars , 2009, 0912.4306.

[29]  A. Laor,et al.  THE RADIATIVE EFFICIENCY OF ACCRETION FLOWS IN INDIVIDUAL ACTIVE GALACTIC NUCLEI , 2010, 1012.3213.

[30]  Donald E. Osterbrock,et al.  Emission-line regions of active galaxies and QSOs , 1986 .

[31]  P. Schady,et al.  XMM-Newton Observations of the Laor et al. Sample of PG Quasars , 2006 .

[32]  P. Lira,et al.  Active galactic nuclei at z ∼ 1.5 – I. Spectral energy distribution and accretion discs , 2014, 1410.8137.

[33]  D. Osterbrock,et al.  The spectra of narrow-line Seyfert 1 galaxies , 1985 .

[34]  E. Szuszkiewicz,et al.  Emergent Spectra from Slim Accretion Disks in Active Galactic Nuclei , 1999 .

[35]  J. Lasota,et al.  Slim Accretion Disks , 1988 .

[36]  P. Marziani,et al.  Phenomenology of Broad Emission Lines in Active Galactic Nuclei , 2000 .

[37]  S. Djorgovski,et al.  Fundamental Properties of Elliptical Galaxies , 1987 .

[38]  E. Verner,et al.  Fe II Diagnostic Tools for Quasars , 2004, astro-ph/0404593.

[39]  Shai Kaspi,et al.  A TENTATIVE SIZE–LUMINOSITY RELATION FOR THE IRON EMISSION-LINE REGION IN QUASARS , 2014, 1404.6142.

[40]  J. Baldwin,et al.  The Origin of Fe II Emission in Active Galactic Nuclei , 2004 .

[41]  L. Ho,et al.  A statistical relation between the X-ray spectral index and Eddington ratio of active galactic nuclei in deep surveys , 2013, 1305.3917.

[42]  Martin Elvis,et al.  Constraints on quasar accretion disks from the optical/ultraviolet/soft X-ray big bump , 1987 .

[43]  Fang Wang,et al.  SUPERMASSIVE BLACK HOLES WITH HIGH ACCRETION RATES IN ACTIVE GALACTIC NUCLEI. I. FIRST RESULTS FROM A NEW REVERBERATION MAPPING CAMPAIGN , 2013, 1310.4107.

[44]  Bradley M. Peterson,et al.  THE LOW-LUMINOSITY END OF THE RADIUS–LUMINOSITY RELATIONSHIP FOR ACTIVE GALACTIC NUCLEI , 2013, 1303.1742.

[45]  Bradley M. Peterson,et al.  Steps toward Determination of the Size and Structure of the Broad-Line Region in Active Galactic Nuclei. XIV. Intensive Optical Spectrophotometric Observations of NGC 7469 , 1998 .

[46]  B. Peterson,et al.  Optical Continuum and Emission-Line Variability of Seyfert 1 Galaxies , 1998, astro-ph/9802104.

[47]  Technion,et al.  The Hard X-Ray Spectral Slope as an Accretion Rate Indicator in Radio-quiet Active Galactic Nuclei , 2006, astro-ph/0606389.

[48]  O. Blaes,et al.  The characteristic blue spectra of accretion disks in quasars as uncovered in the infrared , 2008, Nature.