Which animal model for understanding human navigation in a three-dimensional world?

Single-cell studies of monkey posterior parietal cortex (PPC) have revealed the extensive neuronal representations of three-dimensional subject motion and three-dimensional layout of the environment. I propose that navigational planning integrates this PPC information, including gravity signals, with horizontal-plane based information provided by the hippocampal formation, modified in primates by expansion of the ventral stream.

[1]  Jackson C Liang,et al.  Content representation in the human medial temporal lobe. , 2013, Cerebral cortex.

[2]  Dwight J. Kravitz,et al.  A new neural framework for visuospatial processing , 2011, Nature Reviews Neuroscience.

[3]  J Duysens,et al.  Neurons in the ventral intraparietal area of awake macaque monkey closely resemble neurons in the dorsal part of the medial superior temporal area in their responses to optic flow patterns. , 1996, Journal of neurophysiology.

[4]  F. Torrealba,et al.  The parietal association cortex of the rat. , 2008, Biological research.

[5]  Dwight J. Kravitz,et al.  The ventral visual pathway: an expanded neural framework for the processing of object quality , 2013, Trends in Cognitive Sciences.

[6]  G. DeAngelis,et al.  Multimodal Coding of Three-Dimensional Rotation and Translation in Area MSTd: Comparison of Visual and Vestibular Selectivity , 2007, The Journal of Neuroscience.

[7]  Yong Gu,et al.  Decoding of MSTd Population Activity Accounts for Variations in the Precision of Heading Perception , 2010, Neuron.

[8]  Andrew T. Smith,et al.  The Representation of Egomotion in the Human Brain , 2008, Current Biology.

[9]  G. DeAngelis,et al.  Representation of Vestibular and Visual Cues to Self-Motion in Ventral Intraparietal Cortex , 2011, The Journal of Neuroscience.

[10]  K. Tanaka,et al.  Analysis of local and wide-field movements in the superior temporal visual areas of the macaque monkey , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[11]  G. Orban,et al.  Responses of macaque STS neurons to optic flow components: a comparison of areas MT and MST. , 1994, Journal of neurophysiology.

[12]  Dora E Angelaki,et al.  Convergence of Vestibular and Visual Self-Motion Signals in an Area of the Posterior Sylvian Fissure , 2011, The Journal of Neuroscience.

[13]  Dora E Angelaki,et al.  Macaque Parieto-Insular Vestibular Cortex: Responses to Self-Motion and Optic Flow , 2010, Journal of Neuroscience.

[14]  H. Sakata,et al.  Parietal neurons represent surface orientation from the gradient of binocular disparity. , 2000, Journal of neurophysiology.

[15]  A. Battaglia-Mayer,et al.  Visual Motion Responses of Neurons in the Caudal Area PE of Macaque Monkeys , 2001, The Journal of Neuroscience.

[16]  James T Todd,et al.  The visual perception of 3-D shape from multiple cues: Are observers capable of perceiving metric structure? , 2003, Perception & psychophysics.

[17]  Vincenzo Maffei,et al.  Simulated Self-motion in a Visual Gravity Field: Sensitivity to Vertical and Horizontal , 2022 .

[18]  Nathaniel J. Killian,et al.  A map of visual space in the primate entorhinal cortex , 2012, Nature.

[19]  G. Orban The extraction of 3D shape in the visual system of human and nonhuman primates. , 2011, Annual review of neuroscience.

[20]  Michael J Kahana,et al.  A sense of direction in human entorhinal cortex , 2010, Proceedings of the National Academy of Sciences.

[21]  Jonathan R. Whitlock,et al.  Navigating from hippocampus to parietal cortex , 2008, Proceedings of the National Academy of Sciences.

[22]  R. Andersen,et al.  Intentional maps in posterior parietal cortex. , 2002, Annual review of neuroscience.

[23]  Rufin Vogels,et al.  Convergence of Depth from Texture and Depth from Disparity in Macaque Inferior Temporal Cortex , 2004, The Journal of Neuroscience.