Gel Electrolyte Derived from Poly(ethylene glycol) Blending Poly(acrylonitrile) Applicable to Roll‐to‐Roll Assembly of Electric Double Layer Capacitors

The synthesis of a gelled polymer electrolyte (GPE) using poly(ethylene glycol) blending poly(acrylonitrile) (i.e., PAN-b-PEG-b-PAN) as a host, dimethyl formamide (DMF) as a plasticizer and LiClO4 as an electrolytic salt for electric double layer capacitors (EDLCs) is reported. The PAN-b-PEG-b-PAN copolymer in the GPE has a linear configuration for high ionic conductivity and excellent compatibility with carbon electrodes. When assembling the GPE in a carbon-based symmetric EDLC, the copolymer network facilitates ion motion by reducing the equivalent series resistance and Warburg resistance of the capacitor. This symmetric cell has a capacitance value of 101 F g−1 at 0.125 A g−1 and can deliver an energy level of 11.5 Wh kg−1 at a high power of 10 000 W kg−1 over a voltage window of 2.1 V. This cell shows superior stability, with little decay of specific capacitance after 30 000 galvanostatic charge-discharge cycles. The distinctive merit of the GPE film is its adjustable mechanical integrity, which makes the roll-to-roll assembly of GPE-based EDLCs readily scalable to industrial levels.

[1]  Mao-Sung Wu,et al.  Formation of nano-scaled crevices and spacers in NiO-attached graphene oxide nanosheets for supercapacitors , 2012 .

[2]  H. Teng,et al.  Influence of Carbon Nanotube Grafting on the Impedance Behavior of Activated Carbon Capacitors , 2008 .

[3]  S. Chung,et al.  A basic investigation of anhydrous proton conducting gel electrolytes , 2001 .

[4]  C. Wan,et al.  Review of gel-type polymer electrolytes for lithium-ion batteries , 1999 .

[5]  R. Frost,et al.  Ion-pair formation and anion relaxation in aqueous solutions of Group I perchlorates. A Raman spectral study , 1982 .

[6]  Chuh‐Yung Chen,et al.  Aqueous Polymerization of Acrylamide Initiated by Cerium(IV) - Nitrilotriacetic Acid Redox Initiator , 1993 .

[7]  H. Teng,et al.  Polymer/graphite oxide composites as high-performance materials for electric double layer capacitors , 2010 .

[8]  Taeghwan Hyeon,et al.  Electric double-layer capacitor performance of a new mesoporous carbon , 2000 .

[9]  H. Teng,et al.  Electric double layer capacitors with gelled polymer electrolytes based on poly(ethylene oxide) cured with poly(propylene oxide) diamines , 2008 .

[10]  M. Ishikawa,et al.  Application of proton conducting polymeric electrolytes to electrochemical capacitors , 2004 .

[11]  C. Hsieh,et al.  Electric double layer capacitors based on a composite electrode of activated mesophase pitch and carbon nanotubes , 2012 .

[12]  M. Ishikawa,et al.  Electric Double‐Layer Capacitor Composed of Activated Carbon Fiber Cloth Electrodes and Solid Polymer Electrolytes Containing Alkylammonium Salts , 1994 .

[13]  Y. Kumar,et al.  Multiwalled Carbon Nanotube Electrodes for Electrical Double Layer Capacitors with Ionic Liquid Based Gel Polymer Electrolytes , 2010 .

[14]  Zongping Shao,et al.  Comparisons of different carbon conductive additives on the electrochemical performance of activated carbon , 2007 .

[15]  Wan-Jin Lee,et al.  Electrochemical characteristics of electrospun poly(methyl methacrylate)/polyvinyl chloride as gel polymer electrolytes for lithium ion battery , 2011 .

[16]  Hsisheng Teng,et al.  The performance of electric double layer capacitors using particulate porous carbons derived from PAN fiber and phenol-formaldehyde resin , 2006 .

[17]  Chuh‐Yung Chen,et al.  Aqueous polymerization of acrylamide initiated by cerium (IV)–ethylenediamine tetraacetic acid redox system , 1992 .

[18]  Pierre-Louis Taberna,et al.  Continuous carbide-derived carbon films with high volumetric capacitance , 2011 .

[19]  H. Teng,et al.  Significantly enhanced charge conduction in electric double layer capacitors using carbon nanotube-grafted activated carbon electrodes , 2008 .

[20]  Xiaoyun Li,et al.  A novel high-performance gel polymer electrolyte membrane basing on electrospinning technique for lithium rechargeable batteries , 2011 .

[21]  Xuejie Huang,et al.  Competition Between the Plasticizer and Polymer on Associating with Li + Ions in Polyacrylonitrile‐Based Electrolytes , 1997 .

[22]  Y. W. Kim,et al.  Ionic conduction in PEO-PAN blend polymer electrolytes , 2000 .

[23]  F. Meng,et al.  Sub‐Micrometer‐Thick All‐Solid‐State Supercapacitors with High Power and Energy Densities , 2011, Advanced materials.

[24]  Surjit Singh,et al.  Raman spectral studies on solutions of lithium bromide in binary mixtures of water and acetonitrile in the CH and CN stretching regions , 1988 .

[25]  S. Rajendran,et al.  Studies on the Effect of Anions of Various Lithium Salts in PEMA Gel Polymer Electrolytes , 2011 .

[26]  Y. Chen-Yang,et al.  High discharge capacity solid composite polymer electrolyte lithium battery , 2011 .

[27]  Influence of Particle Size on Rate Performance of Mesoporous Carbon Electric Double-Layer Capacitor (EDLC) Electrodes , 2010 .

[28]  Y. Gogotsi,et al.  Materials for electrochemical capacitors. , 2008, Nature materials.

[29]  F. Chang,et al.  Interaction mechanism of a novel polymer electrolyte composed of poly(acrylonitrile), lithium triflate, and mineral clay , 2001 .

[30]  Keryn Lian,et al.  High rate all-solid electrochemical capacitors using proton conducting polymer electrolytes , 2011 .

[31]  A. Stephan,et al.  Review on gel polymer electrolytes for lithium batteries , 2006 .

[32]  Li-ping Zhu,et al.  Preparation and properties of poly(ethylene oxide) gel filled polypropylene separators and their corresponding gel polymer electrolytes for Li-ion batteries , 2011 .

[33]  C. Hsieh,et al.  Photocatalytically Reduced Graphite Oxide Electrode for Electrochemical Capacitors , 2011 .

[34]  Hsisheng Teng,et al.  Mesoporous carbon spheres grafted with carbon nanofibers for high-rate electric double layer capacitors , 2011 .

[35]  D. James,et al.  Ion-ion-solvent interactions in solution. I solutions of LiClO4 in acetone , 1982 .

[36]  K. S. Nahm,et al.  Review on composite polymer electrolytes for lithium batteries , 2006 .

[37]  Cheng‐Chien Wang,et al.  Comb-like copolymer-based gel polymer electrolytes for lithium ion conductors , 2008 .

[38]  Candace K. Chan,et al.  Printable thin film supercapacitors using single-walled carbon nanotubes. , 2009, Nano letters.

[39]  Magnus Berggren,et al.  Effect of the Ionic Conductivity on the Performance of Polyelectrolyte‐Based Supercapacitors , 2010 .

[40]  Yozo Chatani,et al.  Crystal structure of poly(ethylene oxide) ― sodium iodide complex , 1987 .

[41]  Luzhuo Chen,et al.  Highly flexible and all-solid-state paperlike polymer supercapacitors. , 2010, Nano letters.

[42]  J Kawamura,et al.  Laser Raman and FTIR studies on Li+ interaction in PVAc-LiClO4 polymer electrolytes. , 2006, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[43]  G. Nazri,et al.  Vibrational studies of lithium perchlorate in propylene carbonate solutions , 1993 .

[44]  Ashok Kumar,et al.  Enhanced electrical and electrochemical properties of PMMA–clay nanocomposite gel polymer electrolytes , 2010 .

[45]  Meryl D. Stoller,et al.  Review of Best Practice Methods for Determining an Electrode Material's Performance for Ultracapacitors , 2010 .