Low-temperature superplasticity of ultra-fine-grained Ti-6Al-4V processed by equal-channel angular pressing

[1]  S. Kwun,et al.  Comparison of equal channel angular pressing and cold rolling in the evolution of microstructure and texture in zirconium , 2005 .

[2]  Lijia Chen,et al.  Microstructure evolution and low temperature superplasticity of ZK40 magnesium alloy subjected to ECAP , 2004 .

[3]  F. Froes,et al.  Superior superplastic behavior in fine-grained Ti-6Al-4V sheet , 2002 .

[4]  D. Shin,et al.  Low-temperature superplastic behavior of a submicrometer-grained 5083 Al alloy fabricated by severe plastic deformation , 2002 .

[5]  A. Sergueeva,et al.  Superplastic behaviour of ultrafine-grained Ti–6A1–4V alloys , 2002 .

[6]  T. Langdon,et al.  An evaluation of the flow behavior during high strain rate superplasticity in an Al−Mg−Sc alloy , 2001 .

[7]  F. Froes,et al.  Development of Ti–6Al–4V sheet with low temperature superplastic properties , 2001 .

[8]  V. Stolyarov,et al.  Mechanical Behavior and Superplasticity of a Severe Plastic Deformation Processed Nanocrystalline Ti-6Al-4V Alloy , 2001 .

[9]  A. Sergueeva,et al.  Enhanced superplasticity in a Ti-6Al-4V alloy processed by severe plastic deformation , 2000 .

[10]  W. G. Frazier,et al.  Hot working of commercial Ti–6Al–4V with an equiaxed α–β microstructure: materials modeling considerations , 2000 .

[11]  Yong-Seog Kim,et al.  Microstructural evolution in a commercial low carbon steel by equal channel angular pressing , 2000 .

[12]  R. Valiev,et al.  Bulk nanostructured materials from severe plastic deformation , 2000 .

[13]  Y. Mishin,et al.  Diffusion in the Ti–Al system , 2000 .

[14]  V. Segal Equal channel angular extrusion: from macromechanics to structure formation , 1999 .

[15]  S. Semiatin,et al.  Hot working of Ti-6Al-4V via equal channel angular extrusion , 1999 .

[16]  Yongnam Kwon,et al.  The effect of grain size and temperature on the superplastic deformation behavior of a 7075 Al alloy , 1999 .

[17]  Tae Kwon Ha,et al.  An internal variable theory of structural superplasticity , 1998 .

[18]  T. Mukai,et al.  Elevated temperature mechanical properties of A 5056 Al-Mg alloy processed by equal-channel-angular-extrusion , 1997 .

[19]  J. Jonas,et al.  A mechanical interpretation of the activation energy of high temperature deformation in two phase materials , 1996 .

[20]  E. Collings,et al.  Materials Properties Handbook: Titanium Alloys , 1994 .

[21]  T. Langdon An evaluation of the strain contributed by grain boundary sliding in superplasticity , 1994 .

[22]  R. Valiev,et al.  An investigation of the role of intragranular dislocation strain in the superplastic Pb-62% Sn eutectic alloy , 1993 .

[23]  Zhengxiao Guo,et al.  Modelling of diffusion bonding of metals , 1987 .

[24]  R. Valiev,et al.  On the quantitative evaluation of superplastic flow mechanisms , 1983 .

[25]  I. I. Novikov,et al.  Investigation of structural changes during superplastic deformation of Zn-22% Al alloy by replica locating technique , 1981 .

[26]  A. Rosen,et al.  Superplastic deformation of Ti-6Al-4V alloy , 1977 .

[27]  T. Langdon,et al.  The determination of the activation energy for superplastic flow , 1976 .

[28]  E. W. Hart,et al.  Stress relaxation and mechanical behavior of metals , 1971 .

[29]  Y. Ko,et al.  Effects of temperature and initial microstructure on the equal channel angular pressing of Ti–6Al–4V alloy , 2003 .

[30]  Ji Sik Kim,et al.  Quantitative analysis on boundary sliding and its accommodation mode during superplastic deformation of two-phase Ti-6Al-4V alloy , 1998 .

[31]  J. Jonas,et al.  Formability and workability of metals : plastic instability and flow localization , 1984 .