A Cryogenic Telescope for Far-Infrared Astrophysics: A Vision for NASA in the 2020 Decade

Many of the transformative processes in the Universe have taken place in regions obscured by dust, and are best studied with far-IR spectroscopy. We present the Cryogenic-Aperture Large Infrared-Submillimeter Telescope Observatory (CALISTO), a 5-meter class, space-borne telescope actively cooled to T∼4 K, emphasizing moderate-resolution spectroscopy in the crucial 35 to 600μm band. CALISTO will enable NASA and the world to study the rise of heavy elements in the Universe’s in the first billion years, chart star formation and black hole growth in dust-obscured galaxies through cosmic time, and conduct a census of forming planetary systems in our region of the Galaxy. CALISTO will capitalize on rapid progress in both format and sensitivity of far-IR detectors. Arrays with a total count of a few ×105 detector pixels will form the heart of a suite of imaging spectrometers in which each detector reaches the photon background limit. The Far-IR Science Interest Group will meet from 3–5 June 20151 with the intention of reaching consensus on the architecture for the Far-IR Surveyor mission. This white paper describes one of the architectures to be considered by the community. One or more companion papers will describe alternative architectures. ∗bradford@caltech.edu 1http://conference.ipac.caltech.edu/firsurveyor/

[1]  K. Alatalo,et al.  Powerful H2 Line Cooling in Stephan’s Quintet. II. Group-wide Gas and Shock Modeling of the Warm H2 and a Comparison with [C ii] 157.7 μm Emission and Kinematics , 2017, 1701.03226.

[2]  P. Caselli,et al.  The dynamics of collapsing cores and star formation , 2014, 1410.5889.

[3]  T. Encrenaz,et al.  Evolution of H2O coma of comet 67P/Churuymov-Gerasimenko observed from the Microwave Instrument on the Rosetta Orbiter (MIRO) , 2014 .

[4]  R. O'Brient,et al.  Status of SuperSpec: a broadband, on-chip millimeter-wave spectrometer , 2014, Astronomical Telescopes and Instrumentation.

[5]  Samuel Harvey Moseley,et al.  Micro-Spec: an integrated direct-detection spectrometer for far-infrared space telescopes , 2014, Astronomical Telescopes and Instrumentation.

[6]  Charles M. Bradford,et al.  MEASURING GALAXY CLUSTERING AND THE EVOLUTION OF [C ii] MEAN INTENSITY WITH FAR-IR LINE INTENSITY MAPPING DURING 0.5 < z < 1.5 , 2014, 1407.4860.

[7]  Bryan S. Robinson,et al.  Overview and results of the Lunar Laser Communication Demonstration , 2014, Photonics West - Lasers and Applications in Science and Engineering.

[8]  J. Zmuidzinas,et al.  Design and Performance of SuperSpec: An On-Chip, KID-Based, mm-Wavelength Spectrometer , 2014 .

[9]  N. Llombart,et al.  Optical Measurements of SuperSpec: A Millimeter-Wave On-Chip Spectrometer , 2014 .

[10]  D. Teyssier,et al.  Localized sources of water vapour on the dwarf planet (1) Ceres , 2014, Nature.

[11]  C. A. Oxborrow,et al.  Planck 2013 results. XXX. Cosmic infrared background measurements and implications for star formation , 2013, 1309.0382.

[12]  M. Dickinson,et al.  Cosmic Star-Formation History , 1996, 1403.0007.

[13]  Nuria Llombart,et al.  Photon shot noise limited detection of terahertz radiation using a quantum capacitance detector , 2013 .

[14]  Miguel de Val-Borro,et al.  A HERSCHEL STUDY OF D/H IN WATER IN THE JUPITER-FAMILY COMET 45P/HONDA–MRKOS–PAJDUŠÁKOVÁ AND PROSPECTS FOR D/H MEASUREMENTS WITH CCAT , 2013, 1307.6869.

[15]  P. P. van der Werf,et al.  WATER VAPOR IN NEARBY INFRARED GALAXIES AS PROBED BY HERSCHEL , 2013, 1305.6351.

[16]  Miguel de Val-Borro,et al.  Spatial distribution of water in the stratosphere of Jupiter from Herschel HIFI and PACS observations , 2013 .

[17]  A. Cimatti,et al.  The deepest Herschel-PACS far-infrared survey: number counts and infrared luminosity functions from combined PEP/GOODS-H observations , 2013, 1303.4436.

[18]  Geoffrey A. Blake,et al.  An old disk still capable of forming a planetary system , 2013, Nature.

[19]  Yan Gong,et al.  PROBING THE PRE-REIONIZATION EPOCH WITH MOLECULAR HYDROGEN INTENSITY MAPPING , 2012, 1212.2964.

[20]  Lionel Duband,et al.  Thermal architecture of the SPICA/SAFARI instrument , 2012, Other Conferences.

[21]  Gunaranjan Chaudhry,et al.  A closed-cycle dilution refrigerator for space applications , 2012 .

[22]  Charles M. Bradford,et al.  MKID development for SuperSpec: an on-chip, mm-wave, filter-bank spectrometer , 2012, Other Conferences.

[23]  R. O'Brient,et al.  Electromagnetic design for SuperSpec: a lithographically-patterned millimetre-wave spectrograph , 2012, Other Conferences.

[24]  Jonas Zmuidzinas,et al.  Design considerations for a background limited 350 micron pixel array using lumped element superconducting microresonators , 2012, Other Conferences.

[25]  Jonas Zmuidzinas,et al.  MAKO: a pathfinder instrument for on-sky demonstration of low-cost 350 micron imaging arrays , 2012, Other Conferences.

[26]  N. Llombart,et al.  Real Time Quasiparticle Tunneling Measurements on an Illuminated Quantum Capacitance Detector , 2012 .

[27]  G. Helou,et al.  ULTRALUMINOUS STAR-FORMING GALAXIES AND EXTREMELY LUMINOUS WARM MOLECULAR HYDROGEN EMISSION AT z = 2.16 IN THE PKS 1138−26 RADIO GALAXY PROTOCLUSTER , 2012, 1203.3019.

[28]  M. Franx,et al.  UV-CONTINUUM SLOPES AT z  ∼  4–7 FROM THE HUDF09+ERS+CANDELS OBSERVATIONS: DISCOVERY OF A WELL-DEFINED UV COLOR–MAGNITUDE RELATIONSHIP FOR z ⩾ 4 STAR-FORMING GALAXIES , 2011, 1109.0994.

[29]  M. Franx,et al.  LOWER-LUMINOSITY GALAXIES COULD REIONIZE THE UNIVERSE: VERY STEEP FAINT-END SLOPES TO THE UV LUMINOSITY FUNCTIONS AT z ⩾ 5–8 FROM THE HUDF09 WFC3/IR OBSERVATIONS , 2011, 1105.2038.

[30]  John C. Pearson,et al.  Detection of the Water Reservoir in a Forming Planetary System , 2011, Science.

[31]  Paul Hartogh,et al.  Ocean-like water in the Jupiter-family comet 103P/Hartley 2 , 2011, Nature.

[32]  P. Hartogh,et al.  Direct detection of the Enceladus water torus with Herschel , 2011 .

[33]  J. J. A. Baselmans,et al.  Photon noise limited radiation detection with lens-antenna coupled microwave kinetic inductance detectors , 2011, 1107.4330.

[34]  C. Matt Bradford,et al.  INTENSITY MAPPING OF THE [C ii] FINE STRUCTURE LINE DURING THE EPOCH OF REIONIZATION , 2011, 1107.3553.

[35]  Hy Trac,et al.  Demonstrating the feasibility of line intensity mapping using mock data of galaxy clustering from simulations , 2011, 1104.4809.

[36]  J. J. A. Baselmans,et al.  A DUAL-BAND MILLIMETER-WAVE KINETIC INDUCTANCE CAMERA FOR THE IRAM 30 m TELESCOPE , 2011, 1102.0870.

[37]  Asantha Cooray,et al.  PROBING REIONIZATION WITH INTENSITY MAPPING OF MOLECULAR AND FINE-STRUCTURE LINES , 2011, 1101.2892.

[38]  Robert Antonucci,et al.  JET-POWERED MOLECULAR HYDROGEN EMISSION FROM RADIO GALAXIES , 2010, 1009.4533.

[39]  D. Benford,et al.  A 158 μm [C ii] LINE SURVEY OF GALAXIES AT z ∼ 1–2: AN INDICATOR OF STAR FORMATION IN THE EARLY UNIVERSE , 2010, 1009.4216.

[40]  J. J. Bock,et al.  Sub-Kelvin cooler configuration study for the Background Limited Infrared Submillimeter Spectrometer BLISS on SPICA , 2010 .

[41]  Eli Visbal,et al.  Measuring the 3D clustering of undetected galaxies through cross correlation of their cumulative flux fluctuations from multiple spectral lines , 2010, 1008.3178.

[42]  L. Armus,et al.  The background-limited infrared-submillimeter spectrograph (BLISS) for SPICA: a design study , 2010, Astronomical Telescopes + Instrumentation.

[43]  Michael J. DiPirro,et al.  Design of a 3-stage ADR for the soft x-ray spectrometer instrument on the ASTRO-H mission , 2010, Astronomical Telescopes + Instrumentation.

[44]  Jason Glenn,et al.  MKID multicolor array status and results from DemoCam , 2010, Astronomical Telescopes + Instrumentation.

[45]  Jonas Zmuidzinas,et al.  Titanium Nitride Films for Ultrasensitive Microresonator Detectors , 2010, 1003.5584.

[46]  M. Shaw,et al.  Proof of Concept of the Quantum Capacitance Detector , 2010 .

[47]  M. Cluver,et al.  POWERFUL H2 LINE COOLING IN STEPHAN's QUINTET. I. MAPPING THE SIGNIFICANT COOLING PATHWAYS IN GROUP-WIDE SHOCKS , 2009, 0912.0282.

[48]  R. Aikin,et al.  THE WARM MOLECULAR GAS AROUND THE CLOVERLEAF QUASAR , 2009, 0908.1818.

[49]  M. Shaw,et al.  Quantum capacitance detector: A pair-breaking radiation detector based on the single Cooper-pair box , 2009, 0902.4194.

[50]  Dominic Benford,et al.  CALISTO: the Cryogenic Aperture Large Infrared Space Telescope Observatory , 2008, Astronomical Telescopes + Instrumentation.

[51]  L. Vanzi,et al.  Metallicity Effects on Dust Properties in Starbursting Galaxies , 2008, 0801.1700.

[52]  H. Boehnhardt,et al.  The Solar System Beyond Neptune: Overview and Perspectives , 2008 .

[53]  C. Matt Bradford,et al.  Instrumentation for the next generation cryogenic spaceborne far-IR observatories , 2007, SPIE Optical Engineering + Applications.

[54]  Robert Antonucci,et al.  Shocked Molecular Hydrogen in the 3C 326 Radio Galaxy System , 2007, 0707.0896.

[55]  T. Graauw,et al.  : first results from ISO 2 . 5-45 m SWS spectroscopy of the Circinus Galaxy ? , 2007 .

[56]  G. Rieke,et al.  A Large Mass of H2 in the Brightest Cluster Galaxy in Zwicky 3146 , 2006, astro-ph/0610164.

[57]  Sebastien Triqueneaux,et al.  Design and performance of the dilution cooler system for the Planck mission , 2006 .

[58]  G. Rieke,et al.  The Cosmic Infrared Background Resolved by Spitzer. Contributions of Mid-Infrared Galaxies to the Far-Infrared Background. , 2006, astro-ph/0603208.

[59]  M. Dopita,et al.  Powerful High-Velocity Dispersion Molecular Hydrogen Associated with an Intergalactic Shock Wave in Stephan’s Quintet , 2006, astro-ph/0602554.

[60]  Jack J. Lissauer,et al.  Accretion of the gaseous envelope of Jupiter around a 5–10 Earth-mass core , 2005 .

[61]  J. Shull,et al.  Critical Metallicity and Fine-Structure Emission of Primordial Gas Enriched by the First Stars , 2005, astro-ph/0509101.

[62]  D. Lin,et al.  Attenuation of Millimeter Emission from Circumstellar Disks Induced by the Rapid Dust Accretion , 2004, astro-ph/0410095.

[63]  Karen J. Meech,et al.  Using Cometary Activity to Trace the Physical and Chemical Evolution of Cometary Nuclei , 2004 .

[64]  H. Leduc,et al.  A broadband superconducting detector suitable for use in large arrays , 2003, Nature.

[65]  Junko Kominami,et al.  The Effect of Dissipating Gas Disk on Terrestrial Planet Formation , 2002 .

[66]  H. Feuchtgruber,et al.  ISO-SWS spectra of galaxies: continuum and features , 2000, astro-ph/0002195.

[67]  U. Berkeley,et al.  Extragalactic Results from the Infrared Space Observatory , 2000, astro-ph/0002184.

[68]  C. Bennett,et al.  The Spectrum of the Extragalactic Far-Infrared Background from the COBE FIRAS Observations , 1998, astro-ph/9803021.

[69]  Gordon J. Stacey,et al.  [C II] 158 Micron Observations of IC 10: Evidence for Hidden Molecular Hydrogen in Irregular Galaxies , 1997 .

[70]  William R. Ward,et al.  Survival of Planetary Systems , 1997 .

[71]  Charles H. Townes,et al.  Far-infrared spectroscopy of galaxies - The 158 micron C(+) line and the energy balance of molecular clouds , 1985 .