Chapter 21 Reverse algebra
暂无分享,去创建一个
[1] Harvey M. Friedman,et al. Higher set theory and mathematical practice , 1971 .
[2] J. Ersov. Theorie der Numerierungen II , 1973 .
[3] M. Rabin. Computable algebra, general theory and theory of computable fields. , 1960 .
[4] A. Nerode,et al. Effective content of field theory , 1979 .
[5] P. Bernays,et al. Grundlagen der Mathematik , 1934 .
[6] Stephen G. Simpson,et al. Addendum to "countable algebra and set existence axioms" , 1985, Ann. Pure Appl. Log..
[7] Richard Kaye. Models of Peano arithmetic , 1991, Oxford logic guides.
[8] Joseph R. Shoenfield,et al. Mathematical logic , 1967 .
[9] Stephen G. Simpson,et al. Countable Valued Fields in Weak Subsystems of Second-Order Arithmetic , 1989, Ann. Pure Appl. Log..
[10] Stephen G. Simpson,et al. Countable algebra and set existence axioms , 1983, Ann. Pure Appl. Log..
[11] Kostas Hatzikiriakou. Algebraic disguises ofΣ10 induction , 1989, Arch. Math. Log..
[12] Stephen G. Simpson,et al. Subsystems of second order arithmetic , 1999, Perspectives in mathematical logic.
[13] Ju. L. Ers. Theorie Der Numerierungen III , 1977, Math. Log. Q..
[14] R. Soare,et al. Π⁰₁ classes and degrees of theories , 1972 .
[15] Kostas Hatzikiriakou. WKL0 and Stone's Separation Theorem for Convex Sets , 1996, Ann. Pure Appl. Log..
[16] Stephen G. Simpson,et al. Factorization of polynomials and Σ10 induction , 1986, Ann. Pure Appl. Log..
[17] Kostas Hatzikiriakou,et al. Minimal prime ideals and arithmetic comprehension , 1991, Journal of Symbolic Logic.
[18] J. Shepherdson,et al. Effective procedures in field theory , 1956, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.
[19] Stephen G. Simpson,et al. Which set existence axioms are needed to prove the Cauchy/Peano theorem for ordinary differential equations? , 1984, Journal of Symbolic Logic.
[20] Stephen G. Simpson,et al. Degrees of Unsolvability: A Survey of Results , 1977 .
[21] Stephen G. Simpson,et al. Ordinal numbers and the Hilbert basis theorem , 1988, Journal of Symbolic Logic.