Hybrid nearly singular integration for isogeometric boundary element analysis of coatings and other thin 2D structures

Abstract We present an isogeometric boundary element method (IGABEM) capable of delivering accurate and efficient solutions in the heat transfer analysis of 2D coated structures such as those commonly found in turbomachinery. Although we consider very thin coatings (of thickness down to 1 0 − 7  m), they are modelled explicitly as BEM zones, and this is made possible by the development of a new integration scheme (sinh + ) aimed particularly at the challenging nearly singular integrals that arise. Sinh + is a hybrid of adaptive and sinh transformation approaches, and we make further extensions to the latter to improve its robustness. The scheme is tuned to deliver results of engineering accuracy in an optimal time. The scheme is adaptable, by changing a tolerance, to enable engineers to achieve a different balance between accuracy and computational efficiency as may be required for different applications. A set of numerical examples demonstrates the ability of the scheme to produce accurate temperature distributions efficiently in the presence of very thin coatings.

[1]  John Trevelyan Boundary elements for engineers: Theory and applications , 1994 .

[2]  Thomas-Peter Fries,et al.  Fast Isogeometric Boundary Element Method based on Independent Field Approximation , 2014, ArXiv.

[3]  Matthias Abend,et al.  Boundary Element Programming In Mechanics , 2016 .

[4]  J. Trevelyan,et al.  An isogeometric boundary element method for elastostatic analysis: 2D implementation aspects , 2013, 1302.5305.

[5]  Norio Kamiya,et al.  A general algorithm for the numerical evaluation of nearly singular boundary integrals of various orders for two- and three-dimensional elasticity , 2002 .

[6]  Jianming Zhang,et al.  A spherical element subdivision method for the numerical evaluation of nearly singular integrals in 3D BEM , 2017 .

[7]  O. Estorff,et al.  Isogeometric Boundary Element Method for Acoustics , 2016 .

[8]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[9]  Tg Davies,et al.  Adaptive integration in elasto‐plastic boundary element analysis , 2000 .

[10]  Kang Li,et al.  Isogeometric analysis and shape optimization via boundary integral , 2011, Comput. Aided Des..

[11]  Barbara M. Johnston,et al.  A new method for the numerical evaluation of nearly singular integrals on triangular elements in the 3D boundary element method , 2013, J. Comput. Appl. Math..

[12]  速水 謙 A projection transformation method for nearly singular surface boundary element integrals , 1992 .

[13]  D. Arnold,et al.  On the Asymptotic Convergence of Spline Collocation Methods for Partial Differential Equations , 1984 .

[14]  L. Wrobel,et al.  An ACA Accelerated isogeometric boundary element analysis of potential problems with non-uniform boundary conditions , 2017 .

[15]  Rafael Vázquez Hernández,et al.  An isogeometric boundary element method for electromagnetic scattering with compatible B-spline discretizations , 2017, J. Comput. Phys..

[16]  E. Jordan,et al.  Thermal Barrier Coatings for Gas-Turbine Engine Applications , 2002, Science.

[17]  Vladimir Sladek,et al.  Singular integrals and boundary elements , 1998 .

[18]  Guangyao Li,et al.  An improved exponential transformation for nearly singular boundary element integrals in elasticity problems , 2014 .

[19]  Stéphane Bordas,et al.  Implementation of regularized isogeometric boundary element methods for gradient‐based shape optimization in two‐dimensional linear elasticity , 2016 .

[20]  James R. Salmon,et al.  Cubic spline boundary elements , 1981 .

[21]  Jon Trevelyan,et al.  Accelerating isogeometric boundary element analysis for 3‐dimensional elastostatics problems through black‐box fast multipole method with proper generalized decomposition , 2018 .

[22]  Thomas-Peter Fries,et al.  Stable Isogeometric Analysis of Trimmed Geometries , 2016, ArXiv.

[23]  Y. P. Gong,et al.  Evaluation of nearly singular integrals in isogeometric boundary element method , 2017 .

[24]  G. Sangalli,et al.  Isogeometric analysis in electromagnetics: B-splines approximation , 2010 .

[25]  Jianming Zhang,et al.  A general algorithm for the numerical evaluation of nearly singular integrals on 3D boundary element , 2011, J. Comput. Appl. Math..

[26]  H. Nguyen-Xuan,et al.  Isogeometric analysis using polynomial splines over hierarchical T-meshes for two-dimensional elastic solids , 2011 .

[27]  D. Stöver,et al.  Atmospheric Plasma Spraying of High Melting Temperature Complex Perovskites for TBC Application , 2009, International Thermal Spray Conference.

[28]  David Elliott,et al.  The iterated sinh transformation , 2008 .

[29]  Frank P. Incropera,et al.  Fundamentals of Heat and Mass Transfer , 1981 .

[30]  David J. Benson,et al.  Multi-patch nonsingular isogeometric boundary element analysis in 3D , 2015 .

[31]  Xiao-Wei Gao,et al.  Calculation of 2D nearly singular integrals over high-order geometry elements using the sinh transformation , 2015 .

[32]  John A. Evans,et al.  Isogeometric boundary element analysis using unstructured T-splines , 2013 .

[33]  Zongjun Hu,et al.  The semi-analytical evaluation for nearly singular integrals in isogeometric elasticity boundary element method , 2018, Engineering Analysis with Boundary Elements.

[34]  Bo Zhang,et al.  Two general algorithms for nearly singular integrals in two dimensional anisotropic boundary element method , 2014 .

[35]  A. Abdel-azim Fundamentals of Heat and Mass Transfer , 2011 .

[36]  Yijun Liu,et al.  Analysis of two-dimensional thin structures (from micro- to nano-scales) using the boundary element method , 1998 .

[37]  Hongbo Guo,et al.  Thermo-physical and thermal cycling properties of plasma-sprayed BaLa2Ti3O10 coating as potential thermal barrier materials , 2009 .

[38]  Frederic Ward Williams,et al.  An effective method for finding values on and near boundaries in the elastic BEM , 1998 .

[39]  J. Sládek,et al.  Regularization Techniques Applied to Boundary Element Methods , 1994 .

[40]  Emilio Turco,et al.  A three-dimensional B-spline boundary element , 1998 .

[41]  R. A. Shenoi,et al.  Analytic integration of kernel shape function product integrals in the boundary element method , 2001 .

[42]  John A. Evans,et al.  Isogeometric analysis using T-splines , 2010 .

[43]  N. Kamiya,et al.  Domain supplemental approach to avoid boundary layer effect of BEM in elasticity , 1999 .

[44]  P. Kerfriden,et al.  Isogeometric boundary element methods for three dimensional static fracture and fatigue crack growth , 2017 .

[45]  Ken Hayami,et al.  A numerical quadrature for nearly singular boundary element integrals , 1994 .

[46]  J. Telles A self-adaptive co-ordinate transformation for efficient numerical evaluation of general boundary element integrals , 1987 .

[47]  Huanlin Zhou,et al.  Analytic formulations for calculating nearly singular integrals in two-dimensional BEM , 2007 .

[48]  Jan Sladek,et al.  Singular integrals in boundary element methods , 1998 .

[49]  E. Kuffel,et al.  Spline element for boundary element method , 1994 .

[50]  Tg Davies,et al.  Effective evaluation of non-singular integrals in 3D BEM , 1995 .

[51]  Olgierd Zaleski,et al.  Evaluation of hypersingular and nearly singular integrals in the Isogeometric Boundary Element Method for acoustics , 2017 .

[52]  M. Scott,et al.  Acoustic isogeometric boundary element analysis , 2014 .

[54]  Ping Wang,et al.  Adaptive isogeometric analysis using rational PHT-splines , 2011, Comput. Aided Des..

[55]  Yan Gu,et al.  Boundary element analysis of the thermal behaviour in thin-coated cutting tools , 2010 .

[56]  J. Trevelyan,et al.  Extended isogeometric boundary element method (XIBEM) for two-dimensional Helmholtz problems , 2013 .

[57]  E. Lutz Exact Gaussian quadrature methods for near-singular integrals in the boundary element method , 1992 .

[58]  John A. Evans,et al.  An Isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces , 2012 .

[59]  C. Y. Dong,et al.  An isogeometric boundary element method using adaptive integral method for 3D potential problems , 2017, J. Comput. Appl. Math..

[60]  BOUNDARY INTEGRAL EQUATIONS FOR THIN BODIES , 1994 .

[61]  Guangyao Li,et al.  New variable transformations for evaluating nearly singular integrals in 2D boundary element method , 2011 .

[62]  Huanlin Zhou,et al.  Analytical integral algorithm applied to boundary layer effect and thin body effect in BEM for anisotropic potential problems , 2008 .

[63]  Zhaowei Liu,et al.  Acceleration of isogeometric boundary element analysis through a black-box fast multipole method , 2016 .

[64]  T. Hughes,et al.  Isogeometric fluid-structure interaction: theory, algorithms, and computations , 2008 .

[65]  Hongping Zhu,et al.  The distance sinh transformation for the numerical evaluation of nearly singular integrals over curved surface elements , 2013, Computational Mechanics.

[66]  Y. Miao,et al.  The Sinh Transformation for Curved Elements Using theGeneral Distance Function , 2013 .

[67]  Graham Coates,et al.  Extended isogeometric boundary element method (XIBEM) for three-dimensional medium-wave acoustic scattering problems , 2015 .

[68]  D. Stöver,et al.  Overview on advanced thermal barrier coatings , 2010 .

[69]  Alessandro Reali,et al.  Isogeometric Analysis of Structural Vibrations , 2006 .

[70]  David Elliott,et al.  A sinh transformation for evaluating nearly singular boundary element integrals , 2005 .

[71]  Yuri Bazilevs,et al.  Rotation free isogeometric thin shell analysis using PHT-splines , 2011 .

[72]  T. Rabczuk,et al.  A two-dimensional Isogeometric Boundary Element Method for elastostatic analysis , 2012 .

[73]  Chuanzeng Zhang,et al.  A general algorithm for evaluating nearly singular integrals in anisotropic three-dimensional boundary element analysis , 2016 .

[74]  T. Greville Numerical Procedures for Interpolation by Spline Functions , 1964 .

[75]  Yijun Liu ANALYSIS OF SHELL-LIKE STRUCTURES BY THE BOUNDARY ELEMENT METHOD BASED ON 3-D ELASTICITY: FORMULATION AND VERIFICATION , 1998 .

[76]  Stress rate integral equations of elastoplasticity , 1996 .

[77]  Wen Chen,et al.  Analysis of three-dimensional anisotropic heat conduction problems on thin domains using an advanced boundary element method , 2017, Comput. Math. Appl..

[78]  J. Sládek,et al.  Numerical integration of logarithmic and nearly logarithmic singularity in BEMs , 2001 .

[79]  Carlos Alberto Brebbia,et al.  A BEM formulation using B-splines: I-uniform blending functions , 1990 .

[80]  Barbara M. Johnston,et al.  A sinh transformation for evaluating two‐dimensional nearly singular boundary element integrals , 2007 .

[81]  Douglas N. Arnold,et al.  Finite element exterior calculus with lower-order terms , 2015, Math. Comput..

[82]  N. Kamiya,et al.  A general algorithm for accurate computation of field variables and its derivatives near the boundary in BEM , 2001 .

[83]  Huanlin Zhou,et al.  A semi-analytical algorithm for the evaluation of the nearly singular integrals in three-dimensional boundary element methods , 2005 .

[84]  C. Y. Dong,et al.  An adaptive isogeometric boundary element method for predicting the effective thermal conductivity of steady state heterogeneity , 2018, Advances in Engineering Software.

[85]  Yuri Bazilevs,et al.  Isogeometric fluid–structure interaction analysis with emphasis on non-matching discretizations, and with application to wind turbines , 2012 .

[86]  F. J. Rizzo,et al.  Nearly Singular and Hypersingular Integrals in the Boundary Element Method , 1970 .

[87]  Les A. Piegl,et al.  The NURBS Book , 1995, Monographs in Visual Communication.