Discovery of 16 New z ∼ 5.5 Quasars: Filling in the Redshift Gap of Quasar Color Selection

We present initial results from the first systematic survey of luminous z ∼ 5.5 quasars. Quasars at z ∼ 5.5, the post-reionization epoch, are crucial tools to explore the evolution of intergalactic medium, quasar evolution, and the early super-massive black hole growth. However, it has been very challenging to select quasars at redshifts 5.3 ≤ z ≤ 5.7 using conventional color selections, due to their similar optical colors to late-type stars, especially M dwarfs, resulting in a glaring redshift gap in quasar redshift distributions. We develop a new selection technique for z ∼ 5.5 quasars based on optical, near-IR, and mid-IR photometric data from Sloan Digital Sky Survey (SDSS), UKIRT InfraRed Deep Sky Surveys—Large Area Survey (ULAS), VISTA Hemisphere Survey (VHS), and Wide Field Infrared Survey Explorer. From our pilot observations in the SDSS-ULAS/VHS area, we have discovered 15 new quasars at 5.3 ≤ z ≤ 5.7 and 6 new lower redshift quasars, with SDSS z band magnitude brighter than 20.5. Including other two z ∼ 5.5 quasars already published in our previous work, we now construct a uniform quasar sample at 5.3 ≤ z ≤ 5.7, with 17 quasars in a ∼4800 square degree survey area. For further application in a larger survey area, we apply our selection pipeline to do a test selection by using the new wide field J-band photometric data from a preliminary version of the UKIRT Hemisphere Survey (UHS). We successfully discover the first UHS selected z ∼ 5.5 quasar.

[1]  A. Myers,et al.  The Sloan Digital Sky Survey Quasar Catalog: Twelfth data release , 2016, 1608.06483.

[2]  W. M. Wood-Vasey,et al.  The Pan-STARRS1 Surveys , 2016, 1612.05560.

[3]  Xiaohui Fan,et al.  THE FINAL SDSS HIGH-REDSHIFT QUASAR SAMPLE OF 52 QUASARS AT z > 5.7 , 2016, 1610.05369.

[4]  H. Rix,et al.  THE PAN-STARRS1 DISTANT z > 5.6 QUASAR SURVEY: MORE THAN 100 QUASARS WITHIN THE FIRST GYR OF THE UNIVERSE , 2016, 1608.03279.

[5]  Xiaohui Fan,et al.  A SURVEY OF LUMINOUS HIGH-REDSHIFT QUASARS WITH SDSS AND WISE. II. THE BRIGHT END OF THE QUASAR LUMINOSITY FUNCTION AT z ∼ 5 , 2016, The Astrophysical Journal.

[6]  Z. Cai,et al.  A SURVEY OF LUMINOUS HIGH-REDSHIFT QUASARS WITH SDSS AND WISE. I. TARGET SELECTION AND OPTICAL SPECTROSCOPY , 2016, The Astrophysical Journal.

[7]  A. Myers,et al.  Quasar probabilities and redshifts from WISE mid-IR through GALEX UV photometry , 2015, 1507.02884.

[8]  University of Cambridge,et al.  The VLT Survey Telescope ATLAS , 2015, 1502.05432.

[9]  I. McGreer,et al.  Model-independent evidence in favour of an end to reionization by z ≈ 6 , 2014, 1411.5375.

[10]  P. Madau,et al.  Evidence of patchy hydrogen reionization from an extreme Lyα trough below redshift six , 2014, 1407.4850.

[11]  M. Im,et al.  THE SUBARU HIGH-z QUASAR SURVEY: DISCOVERY OF FAINT z ∼ 6 QUASARS , 2014, 1410.7401.

[12]  P. Hewett,et al.  No excess of bright galaxies around the redshift 7.1 quasar ULAS J1120+0641 , 2014, 1406.0851.

[13]  M. Childress,et al.  PyWiFeS: a rapid data reduction pipeline for the Wide Field Spectrograph (WiFeS) , 2013, Astrophysics and Space Science.

[14]  Adam D. Myers,et al.  The Sloan Digital Sky Survey quasar catalog: tenth data release , 2013, 1311.4870.

[15]  Yiqiao Dong,et al.  ASERA: A spectrum eye recognition assistant for quasar spectra , 2013, Astron. Comput..

[16]  Astronomy,et al.  The ALHAMBRA survey: Discovery of a faint QSO at z = 5.41 , 2013, 1307.5117.

[17]  A. Myers,et al.  THE z = 5 QUASAR LUMINOSITY FUNCTION FROM SDSS STRIPE 82 , 2012, 1212.4493.

[18]  A. Lawrence The UKIRT Infrared Deep Sky Survey (UKIDSS): Origins and Highlights , 2013 .

[19]  Caltech,et al.  Improved measurements of the intergalactic medium temperature around quasars: possible evidence for the initial stages of He II reionization at z ≃ 6 , 2011, 1110.0539.

[20]  E. L. Wright,et al.  PRELIMINARY RESULTS FROM NEOWISE: AN ENHANCEMENT TO THE WIDE-FIELD INFRARED SURVEY EXPLORER FOR SOLAR SYSTEM SCIENCE , 2011, 1102.1996.

[21]  Liverpool John Moores University,et al.  Probabilistic selection of high-redshift quasars , 2011, 1101.4965.

[22]  O. Shemmer,et al.  BLACK HOLE MASS AND GROWTH RATE AT z ≃ 4.8: A SHORT EPISODE OF FAST GROWTH FOLLOWED BY SHORT DUTY CYCLE ACTIVITY , 2010, 1012.1871.

[23]  Martin G. Cohen,et al.  THE WIDE-FIELD INFRARED SURVEY EXPLORER (WISE): MISSION DESCRIPTION AND INITIAL ON-ORBIT PERFORMANCE , 2010, 1008.0031.

[24]  A. Omont,et al.  EDDINGTON-LIMITED ACCRETION AND THE BLACK HOLE MASS FUNCTION AT REDSHIFT 6 , 2010, 1006.1342.

[25]  A. Szalay,et al.  THE SLOAN DIGITAL SKY SURVEY QUASAR CATALOG. V. SEVENTH DATA RELEASE , 2010, 1004.1167.

[26]  Gabe Bloxham,et al.  The Wide Field Spectrograph (WiFeS): performance and data reduction , 2010, 1002.4472.

[27]  R. McLure,et al.  THE CANADA–FRANCE HIGH-z QUASAR SURVEY: NINE NEW QUASARS AND THE LUMINOSITY FUNCTION AT REDSHIFT 6 , 2009, 0912.0281.

[28]  Edward J. Wollack,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.

[29]  Robert H. Becker,et al.  A SURVEY OF z ∼ 6 QUASARS IN THE SLOAN DIGITAL SKY SURVEY DEEP STRIPE. I. A FLUX-LIMITED SAMPLE AT zAB < 21 , 2007, 0708.2578.

[30]  Damien Jones,et al.  The Wide Field Spectrograph (WiFeS) , 2007, 0705.0287.

[31]  A. Szalay,et al.  Clustering of High-Redshift (z ≥ 2.9) Quasars from the Sloan Digital Sky Survey , 2007, astro-ph/0702214.

[32]  M. Bremer,et al.  Discovery of a single faint AGN in a large sample of z > 5 Lyman break galaxies , 2007, astro-ph/0701724.

[33]  M. Irwin,et al.  The UKIRT Infrared Deep Sky Survey (UKIDSS) , 2006, astro-ph/0604426.

[34]  D. Eisenstein,et al.  The Discovery of Three New z > 5 Quasars in the AGN and Galaxy Evolution Survey , 2006, astro-ph/0605030.

[35]  Xiaohui Fan,et al.  Observational Constraints on Cosmic Reionization , 2006, astro-ph/0602375.

[36]  R. Romani,et al.  Q0906+6930: The Highest Redshift Blazar , 2004, astro-ph/0406252.

[37]  Adam J. Burgasser,et al.  The NIRSPEC Brown Dwarf Spectroscopic Survey. I. Low-Resolution Near-Infrared Spectra , 2003, astro-ph/0309257.

[38]  M. SubbaRao,et al.  Spectroscopic Target Selection in the Sloan Digital Sky Survey: The Quasar Sample , 2002, astro-ph/0202251.

[39]  E. al.,et al.  Composite Quasar Spectra from the Sloan Digital Sky Survey , 2001, astro-ph/0105231.

[40]  Brazil,et al.  Radio Properties of z > 4 Optically Selected Quasars , 2000, astro-ph/0001394.

[41]  R. Nichol,et al.  High-Redshift Quasars Found in Sloan Digital Sky Survey Commissioning Data , 1999, astro-ph/0103228.

[42]  Robert Lupton,et al.  A Modified Magnitude System that Produces Well-Behaved Magnitudes, Colors, and Errors Even for Low Signal-to-Noise Ratio Measurements , 1999, astro-ph/9903081.

[43]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[44]  James Liebert,et al.  M dwarf spectra from 0.6 to 1.5 micron - A spectral sequence, model atmosphere fitting, and the temperature scale , 1993 .

[45]  J. Mathis,et al.  The relationship between infrared, optical, and ultraviolet extinction , 1989 .

[46]  R. Weymann,et al.  A MODERATE-RESOLUTION, HIGH-THROUGHPUT CCD CHANNEL FOR THE MMT SPECTROGRAPH , 1989 .