Discovery of 16 New z ∼ 5.5 Quasars: Filling in the Redshift Gap of Quasar Color Selection
暂无分享,去创建一个
Linhua Jiang | I. McGreer | Shu I. Wang | F. Bian | R. Green | A. Lawrence | S. Dye | W. Yi | Qian Yang | Zefeng Li | Feige Wang | Jinyi Yang | M. Yue | Jiani Ding | X. Fan | Xue-bing Wu | J. Ding
[1] A. Myers,et al. The Sloan Digital Sky Survey Quasar Catalog: Twelfth data release , 2016, 1608.06483.
[2] W. M. Wood-Vasey,et al. The Pan-STARRS1 Surveys , 2016, 1612.05560.
[3] Xiaohui Fan,et al. THE FINAL SDSS HIGH-REDSHIFT QUASAR SAMPLE OF 52 QUASARS AT z > 5.7 , 2016, 1610.05369.
[4] H. Rix,et al. THE PAN-STARRS1 DISTANT z > 5.6 QUASAR SURVEY: MORE THAN 100 QUASARS WITHIN THE FIRST GYR OF THE UNIVERSE , 2016, 1608.03279.
[5] Xiaohui Fan,et al. A SURVEY OF LUMINOUS HIGH-REDSHIFT QUASARS WITH SDSS AND WISE. II. THE BRIGHT END OF THE QUASAR LUMINOSITY FUNCTION AT z ∼ 5 , 2016, The Astrophysical Journal.
[6] Z. Cai,et al. A SURVEY OF LUMINOUS HIGH-REDSHIFT QUASARS WITH SDSS AND WISE. I. TARGET SELECTION AND OPTICAL SPECTROSCOPY , 2016, The Astrophysical Journal.
[7] A. Myers,et al. Quasar probabilities and redshifts from WISE mid-IR through GALEX UV photometry , 2015, 1507.02884.
[8] University of Cambridge,et al. The VLT Survey Telescope ATLAS , 2015, 1502.05432.
[9] I. McGreer,et al. Model-independent evidence in favour of an end to reionization by z ≈ 6 , 2014, 1411.5375.
[10] P. Madau,et al. Evidence of patchy hydrogen reionization from an extreme Lyα trough below redshift six , 2014, 1407.4850.
[11] M. Im,et al. THE SUBARU HIGH-z QUASAR SURVEY: DISCOVERY OF FAINT z ∼ 6 QUASARS , 2014, 1410.7401.
[12] P. Hewett,et al. No excess of bright galaxies around the redshift 7.1 quasar ULAS J1120+0641 , 2014, 1406.0851.
[13] M. Childress,et al. PyWiFeS: a rapid data reduction pipeline for the Wide Field Spectrograph (WiFeS) , 2013, Astrophysics and Space Science.
[14] Adam D. Myers,et al. The Sloan Digital Sky Survey quasar catalog: tenth data release , 2013, 1311.4870.
[15] Yiqiao Dong,et al. ASERA: A spectrum eye recognition assistant for quasar spectra , 2013, Astron. Comput..
[16] Astronomy,et al. The ALHAMBRA survey: Discovery of a faint QSO at z = 5.41 , 2013, 1307.5117.
[17] A. Myers,et al. THE z = 5 QUASAR LUMINOSITY FUNCTION FROM SDSS STRIPE 82 , 2012, 1212.4493.
[18] A. Lawrence. The UKIRT Infrared Deep Sky Survey (UKIDSS): Origins and Highlights , 2013 .
[19] Caltech,et al. Improved measurements of the intergalactic medium temperature around quasars: possible evidence for the initial stages of He II reionization at z ≃ 6 , 2011, 1110.0539.
[20] E. L. Wright,et al. PRELIMINARY RESULTS FROM NEOWISE: AN ENHANCEMENT TO THE WIDE-FIELD INFRARED SURVEY EXPLORER FOR SOLAR SYSTEM SCIENCE , 2011, 1102.1996.
[21] Liverpool John Moores University,et al. Probabilistic selection of high-redshift quasars , 2011, 1101.4965.
[22] O. Shemmer,et al. BLACK HOLE MASS AND GROWTH RATE AT z ≃ 4.8: A SHORT EPISODE OF FAST GROWTH FOLLOWED BY SHORT DUTY CYCLE ACTIVITY , 2010, 1012.1871.
[23] Martin G. Cohen,et al. THE WIDE-FIELD INFRARED SURVEY EXPLORER (WISE): MISSION DESCRIPTION AND INITIAL ON-ORBIT PERFORMANCE , 2010, 1008.0031.
[24] A. Omont,et al. EDDINGTON-LIMITED ACCRETION AND THE BLACK HOLE MASS FUNCTION AT REDSHIFT 6 , 2010, 1006.1342.
[25] A. Szalay,et al. THE SLOAN DIGITAL SKY SURVEY QUASAR CATALOG. V. SEVENTH DATA RELEASE , 2010, 1004.1167.
[26] Gabe Bloxham,et al. The Wide Field Spectrograph (WiFeS): performance and data reduction , 2010, 1002.4472.
[27] R. McLure,et al. THE CANADA–FRANCE HIGH-z QUASAR SURVEY: NINE NEW QUASARS AND THE LUMINOSITY FUNCTION AT REDSHIFT 6 , 2009, 0912.0281.
[28] Edward J. Wollack,et al. FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.
[29] Robert H. Becker,et al. A SURVEY OF z ∼ 6 QUASARS IN THE SLOAN DIGITAL SKY SURVEY DEEP STRIPE. I. A FLUX-LIMITED SAMPLE AT zAB < 21 , 2007, 0708.2578.
[30] Damien Jones,et al. The Wide Field Spectrograph (WiFeS) , 2007, 0705.0287.
[31] A. Szalay,et al. Clustering of High-Redshift (z ≥ 2.9) Quasars from the Sloan Digital Sky Survey , 2007, astro-ph/0702214.
[32] M. Bremer,et al. Discovery of a single faint AGN in a large sample of z > 5 Lyman break galaxies , 2007, astro-ph/0701724.
[33] M. Irwin,et al. The UKIRT Infrared Deep Sky Survey (UKIDSS) , 2006, astro-ph/0604426.
[34] D. Eisenstein,et al. The Discovery of Three New z > 5 Quasars in the AGN and Galaxy Evolution Survey , 2006, astro-ph/0605030.
[35] Xiaohui Fan,et al. Observational Constraints on Cosmic Reionization , 2006, astro-ph/0602375.
[36] R. Romani,et al. Q0906+6930: The Highest Redshift Blazar , 2004, astro-ph/0406252.
[37] Adam J. Burgasser,et al. The NIRSPEC Brown Dwarf Spectroscopic Survey. I. Low-Resolution Near-Infrared Spectra , 2003, astro-ph/0309257.
[38] M. SubbaRao,et al. Spectroscopic Target Selection in the Sloan Digital Sky Survey: The Quasar Sample , 2002, astro-ph/0202251.
[39] E. al.,et al. Composite Quasar Spectra from the Sloan Digital Sky Survey , 2001, astro-ph/0105231.
[40] Brazil,et al. Radio Properties of z > 4 Optically Selected Quasars , 2000, astro-ph/0001394.
[41] R. Nichol,et al. High-Redshift Quasars Found in Sloan Digital Sky Survey Commissioning Data , 1999, astro-ph/0103228.
[42] Robert Lupton,et al. A Modified Magnitude System that Produces Well-Behaved Magnitudes, Colors, and Errors Even for Low Signal-to-Noise Ratio Measurements , 1999, astro-ph/9903081.
[43] D. Schlegel,et al. Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .
[44] James Liebert,et al. M dwarf spectra from 0.6 to 1.5 micron - A spectral sequence, model atmosphere fitting, and the temperature scale , 1993 .
[45] J. Mathis,et al. The relationship between infrared, optical, and ultraviolet extinction , 1989 .
[46] R. Weymann,et al. A MODERATE-RESOLUTION, HIGH-THROUGHPUT CCD CHANNEL FOR THE MMT SPECTROGRAPH , 1989 .