Population genetics of Caenorhabditis elegans: the paradox of low polymorphism in a widespread species.

Caenorhabditis elegans has become one of the most widely used model research organisms, yet we have little information on evolutionary processes and recent evolutionary history of this widespread species. We examined patterns of variation at 20 microsatellite loci in a sample of 23 natural isolates of C. elegans from various parts of the world. One-half of the loci were monomorphic among all strains, and overall genetic variation at microsatellite loci was low, relative to most other species. Some population structure was detected, but there was no association between the genetic and geographic distances among different natural isolates. Thus, despite the nearly worldwide occurrence of C. elegans, little evidence was found for local adaptation in strains derived from different parts of the world. The low levels of genetic variation within and among populations suggest that recent colonization and population expansion might have occurred. However, the patterns of variation are not consistent with population expansion. A possible explanation for the observed patterns is the action of background selection to reduce polymorphism, coupled with ongoing gene flow among populations worldwide.

[1]  A. Crawford,et al.  Mutations in sheep microsatellites. , 1996, Genome research.

[2]  R. Terauchi,et al.  MICROSATELLITE POLYMORPHISMS IN NATURAL POPULATIONS OF ARABIDOPSIS THALIANA IN JAPAN , 1995 .

[3]  C. Schlötterer,et al.  Chromosomal patterns of microsatellite variability contrast sharply in African and non-African populations of Drosophila melanogaster. , 2002, Genetics.

[4]  B. Charlesworth,et al.  The effect of deleterious mutations on neutral molecular variation. , 1993, Genetics.

[5]  J Fernando Vázquez,et al.  Estimation of microsatellite mutation rates in Drosophila melanogaster. , 2000, Genetical research.

[6]  K. Weiss,et al.  Genetic variation of the mitochondrial DNA genome in American Indians is at mutation-drift equilibrium. , 1991, American journal of physical anthropology.

[7]  B. Charlesworth,et al.  The effects of local selection, balanced polymorphism and background selection on equilibrium patterns of genetic diversity in subdivided populations. , 1997, Genetical research.

[8]  E. Pollak,et al.  On the theory of partially inbreeding finite populations. I. Partial selfing. , 1988, Genetics.

[9]  T. Ohta,et al.  Distribution of allelic frequencies in a finite population under stepwise production of neutral alleles. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[10]  D. Goldstein,et al.  Microsatellite variation in North American populations of Drosophila melanogaster. , 1995, Nucleic acids research.

[11]  M. Purugganan,et al.  Molecular population genetics of the Arabidopsis CAULIFLOWER regulatory gene: nonneutral evolution and naturally occurring variation in floral homeotic function. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[12]  P. Schmidt,et al.  Adaptive evolution of a candidate gene for aging in Drosophila. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[13]  P. Oefner,et al.  The extent of linkage disequilibrium in Arabidopsis thaliana , 2002, Nature Genetics.

[14]  J. M. Smith,et al.  The hitch-hiking effect of a favourable gene. , 1974, Genetical research.

[15]  G. Gyapay,et al.  A second-generation linkage map of the human genome , 1992, Nature.

[16]  J. Cornuet,et al.  Microsatellite variation in honey bee (Apis mellifera L.) populations: hierarchical genetic structure and test of the infinite allele and stepwise mutation models. , 1995, Genetics.

[17]  M. Blaxter,et al.  Caenorhabditis elegans is a nematode. , 1998, Science.

[18]  G. McVean,et al.  Neutral evolution of the sex-determining gene transformer in Drosophila. , 2000, Genetics.

[19]  D. Goldstein,et al.  Statistical Properties of Two Teststhat Use Multilocus Data Sets to Detect Population Expansions , 1999 .

[20]  W. Ewens The sampling theory of selectively neutral alleles. , 1972, Theoretical population biology.

[21]  M. Purugganan,et al.  Molecular population genetics of floral homeotic loci. Departures from the equilibrium-neutral model at the APETALA3 and PISTILLATA genes of Arabidopsis thaliana. , 1999, Genetics.

[22]  J. McCarter,et al.  The population genetics of the origin and divergence of the Drosophila simulans complex species. , 2000, Genetics.

[23]  C. Aquadro,et al.  Microsatellite variation in populations of Drosophila pseudoobscura and Drosophila persimilis. , 2000, Genetical research.

[24]  M Slatkin,et al.  A measure of population subdivision based on microsatellite allele frequencies. , 1995, Genetics.

[25]  P. Roumet,et al.  Direct estimation of mutation rate for 10 microsatellite loci in durum wheat, Triticum turgidum (L.) Thell. ssp durum desf. , 2002, Molecular biology and evolution.

[26]  E. Stahl,et al.  Genetic variation within and among populations of Arabidopsis thaliana. , 1998, Genetics.

[27]  R. S. Shmookler Reis,et al.  Strain evolution in Caenorhabditis elegans: Transposable elements as markers of interstrain evolutionary history , 1995, Journal of Molecular Evolution.

[28]  J. Powell,et al.  Evolution of codon usage bias in Drosophila. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[29]  J. Powell,et al.  Intraspecific nuclear DNA variation in Drosophila. , 1996, Molecular biology and evolution.

[30]  R. Hudson,et al.  A test of neutral molecular evolution based on nucleotide data. , 1987, Genetics.

[31]  J. Hodgkin,et al.  Natural variation and copulatory plug formation in Caenorhabditis elegans. , 1997, Genetics.

[32]  R. Sommer,et al.  Functional comparison of the nematode Hox gene lin-39 in C. elegans and P. pacificus reveals evolutionary conservation of protein function despite divergence of primary sequences. , 2001, Genes & development.

[33]  J. Walters,et al.  Levels of DNA polymorphism vary with mating system in the nematode genus caenorhabditis. , 2002, Genetics.

[34]  N L Kaplan,et al.  The "hitchhiking effect" revisited. , 1989, Genetics.

[35]  E. Zouros Mutation rates, population sizes and amounts of electrophoretic variation of enzyme loci in natural populations. , 1979, Genetics.

[36]  M. Kimura,et al.  An introduction to population genetics theory , 1971 .

[37]  M. A. van der Horst,et al.  Single nucleotide polymorphisms in wild isolates of Caenorhabditis elegans. , 2000, Genome research.

[38]  J. Ecker,et al.  Assignment of 30 microsatellite loci to the linkage map of Arabidopsis. , 1994, Genomics.

[39]  C. Aquadro,et al.  High density of long dinucleotide microsatellites in Drosophila subobscura. , 2000, Molecular biology and evolution.

[40]  R. Frankham,et al.  Microsatellite polymorphisms in a wild population of Drosophila melanogaster. , 1996, Genetical research.

[41]  F. Kafatos,et al.  Microsatellite DNA and isozyme variability in a West African population of Anopheles gambiae , 1995, Insect molecular biology.

[42]  L. Cavalli-Sforza,et al.  High resolution of human evolutionary trees with polymorphic microsatellites , 1994, Nature.

[43]  Eric S. Lander,et al.  A comprehensive genetic map of the mouse genome , 1996, Nature.

[44]  B. Charlesworth,et al.  Increased levels of polymorphism surrounding selectively maintained sites in highly selling species , 1996, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[45]  T. Hayashi,et al.  Simple sequence repeats for genetic analysis in pear , 2002, Euphytica.

[46]  M. Beaumont Detecting population expansion and decline using microsatellites. , 1999, Genetics.

[47]  N. A. Kader,et al.  Isolement, identification et caractérisation de souches québécoises du nématode Caenorhabditis elegans , 1996 .

[48]  E. W. Hutchinson,et al.  Absence of strong heterosis for life span and other life history traits in Caenorhabditis elegans. , 1993, Genetics.

[49]  J. Chory,et al.  Natural variation in light sensitivity of Arabidopsis , 2001, Nature Genetics.

[50]  C. Schlötterer,et al.  Drosophila virilis has long and highly polymorphic microsatellites. , 2000, Molecular biology and evolution.

[51]  M Kimmel,et al.  A power analysis of microsatellite-based statistics for inferring past population growth. , 2000, Molecular biology and evolution.

[52]  L. Excoffier,et al.  Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. , 1992, Genetics.

[53]  J. Chory,et al.  Natural variation in phytochrome signaling. , 2000, Seminars in cell & developmental biology.

[54]  C. Wills,et al.  Abundant microsatellite polymorphism in Saccharomyces cerevisiae, and the different distributions of microsatellites in eight prokaryotes and S. cerevisiae, result from strong mutation pressures and a variety of selective forces. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[55]  Trudy F. C. Mackay,et al.  Quantitative trait loci in Drosophila , 2001, Nature Reviews Genetics.

[56]  M. Kreitman,et al.  Adaptive protein evolution at the Adh locus in Drosophila , 1991, Nature.

[57]  M Kimmel,et al.  Signatures of population expansion in microsatellite repeat data. , 1998, Genetics.

[58]  G. Yue,et al.  Mutation Rate at Swine Microsatellite Loci , 2002, Genetica.

[59]  A. Uitterlinden,et al.  The Caenorhabditis elegans genome contains monomorphic minisatellites and simple sequences. , 1989, Nucleic acids research.

[60]  M. Félix,et al.  Microevolutionary studies in nematodes: a beginning , 2001, BioEssays : news and reviews in molecular, cellular and developmental biology.

[61]  Y. Isagi,et al.  Microsatellite genetic variation in small and isolated populations of Magnolia sieboldii ssp. japonica , 2002, Heredity.

[62]  David B. Goldstein,et al.  Microsatellites: Evolution and Applications , 1999 .

[63]  S. Tingey,et al.  Simple sequence repeats for germplasm analysis and mapping in maize. , 1996, Genome.

[64]  L. Keller,et al.  Low polymorphism at 19 microsatellite loci in a French population of Argentine ants (Linepithema humile) , 1999 .

[65]  C. Beattie,et al.  ISOLATION OF 105 MICROSATELLITE LOCI FROM AN OVINE GENOMIC LIBRARY ENRICHED FOR MICROSATELLITES , 2001, Animal biotechnology.

[66]  G. Fox,et al.  Molecular relationships between closely related strains and species of nematodes , 1981, Journal of Molecular Evolution.

[67]  S WRIGHT,et al.  Genetical structure of populations. , 1950, Nature.

[68]  W. J. Kent,et al.  Conservation, regulation, synteny, and introns in a large-scale C. briggsae-C. elegans genomic alignment. , 2000, Genome research.

[69]  R. Terauchi,et al.  Microsatellite polymorphism in natural populations of the wild plant Arabidopsis thaliana. , 1997, Genetics.

[70]  M. V. Katti,et al.  Differential distribution of simple sequence repeats in eukaryotic genome sequences. , 2001, Molecular biology and evolution.

[71]  D. Goldstein,et al.  Genetic evidence for a Paleolithic human population expansion in Africa. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[72]  B. Dujon,et al.  Microsatellite Typing as a New Tool for Identification of Saccharomyces cerevisiae Strains , 2001, Journal of Clinical Microbiology.

[73]  M. Nordborg Structured coalescent processes on different time scales. , 1997, Genetics.