Upper Bounds in Affine Weyl Groups under the Weak Order

Björner and Wachs proved that under the weak order every quotient of a Coxeter group is a meet semi-lattice, and in the finite case is a lattice. In this paper, we examine the case of an affine Weyl group W with corresponding finite Weyl group W0. In particular, we show that the quotient of W by W0 is a lattice and that up to isomorphism this is the only quotient of W which is a lattice. We also determine that the question of which pairs of elements of W have upper bounds can be reduced to the analogous question within a particular finite subposet.