A geometric theory for derivative feedback

The authors use a singular system setting to provide a geometric theory for dynamical systems under derivative feedback. They define the relevant subspace and provide computational design techniques in terms of a generalized Sylvester or Lyapunov equation for which efficient solution techniques are well-known. The authors provide both geometric and algebraic characterizations of the effects of derivative feedback, drawing connections with previous work in state-variable systems as well as extending that work to singular systems. >

[1]  T. Kailath,et al.  A generalized state-space for singular systems , 1981 .

[2]  P. Dooren The Computation of Kronecker's Canonical Form of a Singular Pencil , 1979 .

[3]  J. Willems Almost invariant subspaces: An approach to high gain feedback design--Part II: Almost conditionally invariant subspaces , 1981 .

[4]  M. Shayman,et al.  Feedback Control and Classification of Generalized Linear Systems , 1987, 1987 American Control Conference.

[5]  V. Armentano The pencil (sE-A) and controllability-observability for generalized linear systems: A geometric approach , 1984, The 23rd IEEE Conference on Decision and Control.

[6]  F. Lewis,et al.  Geometric structure and feedback in singular systems , 1989 .

[7]  N. Karcanias,et al.  Matrix pencil characterization of almost ( A, Z) -invariant subspaces : A classification of geometric concepts , 1981 .

[8]  P. Dooren,et al.  A reduced order observer for descriptor systems , 1986 .

[9]  Johannes Schumacher,et al.  Algebraic characterizations of almost invariance , 1983 .

[10]  A. Pugh,et al.  On the zeros and poles of a rational matrix , 1979 .

[11]  F. Lewis A survey of linear singular systems , 1986 .

[12]  R. Mukundan,et al.  Feedback control of singular systems—proportional and derivative feedback of the state , 1983 .

[13]  K. Wong The eigenvalue problem λTx + Sx , 1974 .

[14]  J. Dwight Aplevich,et al.  Minimal representations of implicit linear systems , 1985, Autom..

[15]  G. Hayton,et al.  Generalised Autonomous Dynamical Systems, Algebraic Duality and Geometric Theory , 1981 .

[16]  L. Mirsky,et al.  The Theory of Matrices , 1961, The Mathematical Gazette.

[17]  F. R. Gantmakher The Theory of Matrices , 1984 .

[18]  W. Wonham Linear Multivariable Control: A Geometric Approach , 1974 .

[19]  M. Malabre More geometry about singular systems , 1987, 26th IEEE Conference on Decision and Control.

[20]  J. Willems Feedforward control, PID control laws, and almost invariant subspaces , 1982 .

[21]  D. Cobb Controllability, observability, and duality in singular systems , 1984 .

[22]  N. Nichols,et al.  Eigenstructure assignment in descriptor systems , 1986 .

[23]  Frank L. Lewis,et al.  A geometric approach to eigenstructure assignment for singular systems , 1987 .

[24]  P. Bernhard On Singular Implicit Linear Dynamical Systems , 1982 .

[25]  G. Basile,et al.  Controlled and conditioned invariant subspaces in linear system theory , 1969 .

[26]  K. Özçaldiran A geometric characterization of the reachable and the controllable subspaces of descriptor systems , 1986 .