A geometric theory for derivative feedback
暂无分享,去创建一个
[1] T. Kailath,et al. A generalized state-space for singular systems , 1981 .
[2] P. Dooren. The Computation of Kronecker's Canonical Form of a Singular Pencil , 1979 .
[3] J. Willems. Almost invariant subspaces: An approach to high gain feedback design--Part II: Almost conditionally invariant subspaces , 1981 .
[4] M. Shayman,et al. Feedback Control and Classification of Generalized Linear Systems , 1987, 1987 American Control Conference.
[5] V. Armentano. The pencil (sE-A) and controllability-observability for generalized linear systems: A geometric approach , 1984, The 23rd IEEE Conference on Decision and Control.
[6] F. Lewis,et al. Geometric structure and feedback in singular systems , 1989 .
[7] N. Karcanias,et al. Matrix pencil characterization of almost ( A, Z) -invariant subspaces : A classification of geometric concepts , 1981 .
[8] P. Dooren,et al. A reduced order observer for descriptor systems , 1986 .
[9] Johannes Schumacher,et al. Algebraic characterizations of almost invariance , 1983 .
[10] A. Pugh,et al. On the zeros and poles of a rational matrix , 1979 .
[11] F. Lewis. A survey of linear singular systems , 1986 .
[12] R. Mukundan,et al. Feedback control of singular systems—proportional and derivative feedback of the state , 1983 .
[13] K. Wong. The eigenvalue problem λTx + Sx , 1974 .
[14] J. Dwight Aplevich,et al. Minimal representations of implicit linear systems , 1985, Autom..
[15] G. Hayton,et al. Generalised Autonomous Dynamical Systems, Algebraic Duality and Geometric Theory , 1981 .
[16] L. Mirsky,et al. The Theory of Matrices , 1961, The Mathematical Gazette.
[17] F. R. Gantmakher. The Theory of Matrices , 1984 .
[18] W. Wonham. Linear Multivariable Control: A Geometric Approach , 1974 .
[19] M. Malabre. More geometry about singular systems , 1987, 26th IEEE Conference on Decision and Control.
[20] J. Willems. Feedforward control, PID control laws, and almost invariant subspaces , 1982 .
[21] D. Cobb. Controllability, observability, and duality in singular systems , 1984 .
[22] N. Nichols,et al. Eigenstructure assignment in descriptor systems , 1986 .
[23] Frank L. Lewis,et al. A geometric approach to eigenstructure assignment for singular systems , 1987 .
[24] P. Bernhard. On Singular Implicit Linear Dynamical Systems , 1982 .
[25] G. Basile,et al. Controlled and conditioned invariant subspaces in linear system theory , 1969 .
[26] K. Özçaldiran. A geometric characterization of the reachable and the controllable subspaces of descriptor systems , 1986 .