Geometric Moments and Their Invariants

Moments and their invariants have been extensively used in computer vision and pattern recognition. There is an extensive and sometimes confusing literature on the computation of a basis of functionally independent moments up to a given order. Many approaches have been used to solve this problem albeit not entirely successfully. In this paper we present a (purely) matrix algebra approach to compute both orthogonal and affine invariants for planar objects that is ideally suited to both symbolic and numerical computation of the invariants. Furthermore we generate bases for both systems of invariants and, in addition, our approach generalises to higher dimensional cases.

[1]  Demetri Psaltis,et al.  Recognitive Aspects of Moment Invariants , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[2]  M. Teague Image analysis via the general theory of moments , 1980 .

[3]  Chee-Way Chong,et al.  Translation and scale invariants of Legendre moments , 2004, Pattern Recognit..

[4]  T. A. Springer The Algebra of Invariants , 2007 .

[5]  Kin-Man Lam,et al.  Generation of moment invariants and their uses for character recognition , 1995, Pattern Recognit. Lett..

[6]  Jan Flusser,et al.  Affine moment invariants generated by graph method , 2011, Pattern Recognit..

[7]  G. Taubin,et al.  Object recognition based on moment (or algebraic) invariants , 1992 .

[8]  Olaf Kübler,et al.  Complete Sets of Complex Zernike Moment Invariants and the Role of the Pseudoinvariants , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[9]  R. Howe,et al.  ON CLASSICAL INVARIANT THEORY , 2010 .

[10]  Jin Liu,et al.  Fast algorithm for generation of moment invariants , 2004, Pattern Recognit..

[11]  Ming-Kuei Hu,et al.  Visual pattern recognition by moment invariants , 1962, IRE Trans. Inf. Theory.

[12]  Dong Xu,et al.  Geometric moment invariants , 2008, Pattern Recognit..

[13]  Yajun Li,et al.  Reforming the theory of invariant moments for pattern recognition , 1992, Pattern Recognit..

[14]  Huazhong Shu,et al.  Construction of a complete set of orthogonal Fourier-Mellin moment invariants for pattern recognition applications , 2010, Image Vis. Comput..

[15]  Irina A. Kogan,et al.  Rational invariants of a group action. Construction and rewriting , 2007, J. Symb. Comput..

[16]  Jan Flusser,et al.  On the independence of rotation moment invariants , 2000, Pattern Recognit..

[17]  P. Olver Classical Invariant Theory , 1999 .

[18]  Jie Chen,et al.  Affine curve moment invariants for shape recognition , 1997, Pattern Recognit..

[19]  Andrew Zisserman,et al.  Geometric invariance in computer vision , 1992 .

[20]  Gerry Leversha,et al.  CRC Concise encyclopedia of mathematics (2nd edn), by Eric W. Weisstein. Pp. 3242. £66.99 (hbk). 2002. ISBN 1 58488 347 2 (Chapman and Hall). Also available as a CD-ROM (ISBN 084919463) at the same price. , 2003, The Mathematical Gazette.

[21]  Evelyne Hubert,et al.  Rational Invariants of a Group Action , 2013 .

[22]  Eric W. Weisstein,et al.  The CRC concise encyclopedia of mathematics , 1999 .

[23]  J. Flusser,et al.  Moments and Moment Invariants in Pattern Recognition , 2009 .

[24]  Jan Flusser,et al.  On the inverse problem of rotation moment invariants , 2002, Pattern Recognit..

[25]  Sim Heng Ong,et al.  Image Analysis by Tchebichef Moments , 2001, IEEE Trans. Image Process..

[26]  Raveendran Paramesran,et al.  Image analysis by Krawtchouk moments , 2003, IEEE Trans. Image Process..