Optically Levitated Nanodumbbell Torsion Balance and GHz Nanomechanical Rotor.

Levitated optomechanics has great potential in precision measurements, thermodynamics, macroscopic quantum mechanics, and quantum sensing. Here we synthesize and optically levitate silica nanodumbbells in high vacuum. With a linearly polarized laser, we observe the torsional vibration of an optically levitated nanodumbbell. This levitated nanodumbbell torsion balance is a novel analog of the Cavendish torsion balance, and provides rare opportunities to observe the Casimir torque and probe the quantum nature of gravity as proposed recently. With a circularly polarized laser, we drive a 170-nm-diameter nanodumbbell to rotate beyond 1 GHz, which is the fastest nanomechanical rotor realized to date. Smaller silica nanodumbbells can sustain higher rotation frequencies. Such ultrafast rotation may be used to study material properties and probe vacuum friction.

[1]  Jonghoon Ahn,et al.  Electron spin control of optically levitated nanodiamonds in vacuum , 2015, Nature Communications.

[2]  Thomas de Quincey [C] , 2000, The Works of Thomas De Quincey, Vol. 1: Writings, 1799–1820.

[3]  Jonghoon Ahn,et al.  Torsional Optomechanics of a Levitated Nonspherical Nanoparticle. , 2016, Physical review letters.

[4]  M. Pitkonen Polarizability of the dielectric double-sphere , 2006 .

[5]  Z. Jacob,et al.  Giant non-equilibrium vacuum friction: role of singular evanescent wave resonances in moving media , 2014, 1411.2737.

[6]  Zach DeVito,et al.  Opt , 2017 .

[7]  한성민,et al.  3 , 1823, Dance for Me When I Die.

[8]  Sumit Ghosh,et al.  Optical rotation of levitated spheres in high vacuum , 2018, Physical Review A.

[9]  A. Geraci,et al.  Zeptonewton force sensing with nanospheres in an optical lattice , 2016, 1603.02122.

[10]  Zhang-qi Yin,et al.  OPTOMECHANICS OF LEVITATED DIELECTRIC PARTICLES , 2013, 1308.4503.

[11]  D. Mackowski,et al.  Monte Carlo simulation of hydrodynamic drag and thermophoresis of fractal aggregates of spheres in the free-molecule flow regime , 2006 .

[12]  Stefan Kuhn,et al.  Optically driven ultra-stable nanomechanical rotor , 2017, Nature Communications.

[13]  著者なし 16 , 1871, Animals at the End of the World.

[14]  S. J. Enk Casimir torque between dielectrics. , 1995 .

[15]  S. Schiller,et al.  Highly sensitive silicon crystal torque sensor operating at the thermal noise limit. , 2007, The Review of scientific instruments.

[16]  Mark G. Raizen,et al.  Millikelvin cooling of an optically trapped microsphere in vacuum , 2011, 1101.1283.

[17]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[18]  S. Schlamminger,et al.  Torsion balance experiments: A low-energy frontier of particle physics , 2009 .

[19]  Giorgio Gratta,et al.  Search for Screened Interactions Associated with Dark Energy below the 100 μm Length Scale. , 2016, Physical review letters.

[20]  Kishan Dholakia,et al.  Supplementary Figure S1: Numerical Psd Simulation. Example Numerical Simulation of The , 2022 .

[21]  R. A. Beth Mechanical Detection and Measurement of the Angular Momentum of Light , 1936 .

[22]  J. Kolar,et al.  Ultrafast rotation of magnetically levitated macroscopic steel spheres , 2018, Science Advances.

[23]  Henry Cavendish,et al.  XXI. Experiments to determine the density of the earth , 2022, Philosophical Transactions of the Royal Society of London.

[24]  Gavin W. Morley,et al.  Burning and graphitization of optically levitated nanodiamonds in vacuum , 2015, Scientific Reports.

[25]  Tongcang Li,et al.  Detecting Casimir torque with an optically levitated nanorod , 2017, 1704.08770.

[26]  F. J. Rodríguez-Fortuño,et al.  Lateral Casimir Force on a Rotating Particle near a Planar Surface. , 2016, Physical review letters.

[27]  P. Chan,et al.  Free-molecule drag on straight chains of uniform spheres , 1981 .

[28]  V Vedral,et al.  Gravitationally Induced Entanglement between Two Massive Particles is Sufficient Evidence of Quantum Effects in Gravity. , 2017, Physical review letters.

[29]  Antonio-José Almeida,et al.  NAT , 2019, Springer Reference Medizin.

[30]  G. Mulholland,et al.  Calculating the rotational friction coefficient of fractal aerosol particles in the transition regime using extended Kirkwood-Riseman theory. , 2017, Physical review. E.

[31]  B. Hauer,et al.  Approaching the standard quantum limit of mechanical torque sensing , 2016, Nature Communications.

[32]  Gilberto Brambilla,et al.  The ultimate strength of glass silica nanowires. , 2009, Nano letters.

[33]  Andrew G. Glen,et al.  APPL , 2001 .

[34]  Bruce T. Draine,et al.  The discrete-dipole approximation and its application to interstellar graphite grains , 1988 .

[35]  Jacob P. J. Murphy,et al.  Optical and magnetic measurements of gyroscopically stabilized graphene nanoplatelets levitated in an ion trap , 2016, 1612.05928.

[36]  Pavel Zemánek,et al.  Colloquium: Gripped by light: Optical binding , 2010 .

[37]  George H. Weiss,et al.  Dielectric Anisotropy and the van der Waals Interaction between Bulk Media , 1972 .

[38]  Lukas Novotny,et al.  Controlling the net charge on a nanoparticle optically levitated in vacuum , 2017, 1704.00169.

[39]  D. E. Chang,et al.  Cavity opto-mechanics using an optically levitated nanosphere , 2009, Proceedings of the National Academy of Sciences.

[40]  Lukas Novotny,et al.  GHz Rotation of an Optically Trapped Nanoparticle in Vacuum. , 2018, Physical review letters.

[41]  Mauro Paternostro,et al.  Spin Entanglement Witness for Quantum Gravity. , 2017, Physical review letters.

[42]  N. Kiesel,et al.  Cavity optomechanics of levitated nanodumbbells: nonequilibrium phases and self-assembly. , 2012, Physical review letters.

[43]  R. Sarpong,et al.  Bio-inspired synthesis of xishacorenes A, B, and C, and a new congener from fuscol† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc02572c , 2019, Chemical science.

[44]  B. Stickler,et al.  Rotranslational cavity cooling of dielectric rods and disks , 2016, 1605.05674.

[45]  Rongkuo Zhao,et al.  Rotational quantum friction. , 2012, Physical review letters.

[46]  J. Ignacio Cirac,et al.  Toward quantum superposition of living organisms , 2009, 0909.1469.

[47]  37 , 2018, In Pursuit.

[48]  Arthur Ashkin,et al.  Optical levitation in high vacuum , 1976 .

[49]  Yu. S. Barash,et al.  Moment of van der Waals forces between anisotropic bodies , 1978 .

[50]  M. Bhattacharya,et al.  Coupling a small torsional oscillator to large optical angular momentum , 2013, 1304.4975.

[51]  Pavel Zemánek,et al.  Optical alignment and confinement of an ellipsoidal nanorod in optical tweezers: a theoretical study. , 2012, Journal of the Optical Society of America. A, Optics, image science, and vision.

[52]  C. V. van Kats,et al.  Synthesis of colloidal silica dumbbells. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[53]  Eva von Haartman,et al.  Multi-dimensional single-spin nano-optomechanics with a levitated nanodiamond , 2015, Nature Photonics.