THE PLUMOSE BOULANGERITE FROM BOTTINO, APUAN ALPS, ITALY: CRYSTAL STRUCTURE, OD CHARACTER AND TWINNING

We deal with a single-crystal X-ray diffraction study of boulangerite from a plumose sample from the Bottino mine, Apuan Alps, Italy. Chemical composition of the analyzed sample is Pb 4.89 (Sb 4.08 As 0.04 Bi 0.01 ) ∑4.13 (S 10.98 Se 0.02 ) ∑11.00 . The crystal structure was investigated and evaluated in terms of the order–disorder (OD) theory. Boulangerite belongs to the subcategory Ia of OD structures composed of equivalent layers with symmetry P ( n )2 1 m . Two polytypes with maximum degree of order (MDO) are possible: MDO1 with space group P 12 1 / a 1 and unit-cell parameters a 1 ≈ 21.61, b 1 ≈ 23.54, c 1 ≈ 8.05 A, β 1 ≈ 100.7°; MDO2 with space-group P 2 1 / n 11 and unit-cell parameters a 2 ≈ 21.24, b 2 ≈ 23.54, c 2 ≈ 8.05 A, α 2 ≈ 90°. Single-crystal X-ray diffraction patterns (Mo K α, CCD detector) show strong reflections pointing to an orthorhombic substructure (the “family structure” in the OD terminology) and additional weaker reflections that correspond to the polytype MDO 1 . Frequent twinning with (100) as the twin plane was observed. The MDO1 structure was refined on a twinned crystal to R = 0.062 for 8495 reflections with F o > 4σ( F o ). Unit-cell parameters are a 21.554(4), b 23.454(4), c 8.079(2) A, β 100.76(1)°. The structure of boulangerite is composed of rods of SnS archetype six atomic layers thick and three pyramids wide. The central portion of these thick rods is characterized by ribbons of coordination pyramids of Pb and Sb atoms alternating along [001]; the marginal portions contain ribbons of coordination pyramids primarily occupied by Sb. In the refined structure, there are 18 independent cation sites: 10 are pure lead sites, six are pure antimony sites, two mixed positions split into two close sites occupied by Pb and Sb, respectively. On the basis of an OD interpretation, we assess the relationships between monoclinic and orthorhombic structures reported in the literature for boulangerite.

[1]  Ž. Živković,et al.  Characterization of the natural mineral form from the PbS-Sb2S3 system , 2010 .

[2]  E. Makovicky,et al.  THE CRYSTAL STRUCTURE OF SULFOSALTS WITH THE BOXWORK ARCHITECTURE AND THEIR NEW REPRESENTATIVE, Pb15−2xSb14+2xS36Ox , 2009 .

[3]  S. Merlino OD approach to polytypism: examples, problems, indications , 2009 .

[4]  Masaaki Shimizu,et al.  Sulfosalt systematics: a review. Report of the sulfosalt sub-committee of the IMA Commission on Ore Mineralogy , 2008 .

[5]  S. Krivovichev Nanotubes in Minerals and Mineral-Related Systems , 2008 .

[6]  P. Orlandi,et al.  Jamesonite delle miniere di Fornovolasco (Vergemoli, Lucca): primo ritrovamento sulle Alpi Apuane , 2008 .

[7]  H. Dittrich,et al.  Sulfosalts — A new class of compound semiconductors for photovoltaic applications , 2007 .

[8]  E. Makovicky,et al.  THE CRYSTAL STRUCTURE OF DADSONITE , 2006 .

[9]  G. Wagner,et al.  Nanowire arrangements of PbS–Sb2S3-compounds , 2004 .

[10]  Giovanni Ferraris,et al.  Crystallography of Modular Materials , 2004 .

[11]  L. Karanović,et al.  Structure refinement of natural robinsonite, Pb 4 Sb 6 S 13 : cation distribution and modular description , 2004 .

[12]  Richard I. Cooper,et al.  CRYSTALS version 12: software for guided crystal structure analysis , 2003 .

[13]  M. Nespolo,et al.  Effects of the stacking faults on the calculated electron density of mica polytypes - The Ďurovič effect , 2001 .

[14]  B. Mishra,et al.  The minerals boulangerite, falkmanite and Cu-free meneghinite: synthesis, new powder diffraction data and stability relations , 2001 .

[15]  S. Ďurovič Fundamentals of the OD theory , 1997 .

[16]  S. Merlino OD approach in minerals: Examples and applications , 1997 .

[17]  G. Damian,et al.  NEW DATA ON ìPLUMOSITEî AND OTHER SULPHOSALT MINERALS FROM THE HERJA HYDROTHERMAL VEIN DEPOSIT, BAIA MARE DISTRICT, RUMANIA , 1997 .

[18]  George M. Sheldrick,et al.  SADABS, Program for Empirical Absorption Correction of Area Detector Data , 1996 .

[19]  R. Antón,et al.  Crystal chemistry and thin film epitaxy of sulfides and Bi-Sb-sulfosalts and their geological application , 1995 .

[20]  R. Blessing,et al.  An empirical correction for absorption anisotropy. , 1995, Acta crystallographica. Section A, Foundations of crystallography.

[21]  E. Makovicky Rod-based sulphosalt structures derived from the SnS and PbS archetypes , 1993 .

[22]  Michael O'Keeffe,et al.  Bond-valence parameters for solids , 1991 .

[23]  I. Brown,et al.  Refinement of the structure of boulangerite, Pb5Sb4S11 , 1990 .

[24]  I. Brown,et al.  Refinement of the structure of robinsonite, Pb4Sb6S13 , 1990 .

[25]  A. Guinier,et al.  Nomenclature of Polytype Structures Report of the International Union of Crystallography Ad-Hoc Committee on the Nomenclature of Disordered, Modulated and Polytype Structures* , 1984 .

[26]  B. Hyde,et al.  The homologous series Sb2S3.nPbS: structures of diantimony dilead pentasulphide, Pb2Sb2S5, and the related phase diantimony ditin pentasulphide, Sn2Sb2S5 , 1983 .

[27]  E. Makovicky,et al.  Non-commensurate (misfit) layer structures , 1981 .

[28]  J. Jumas,et al.  Sur le systme SnSSb2S3: tude structurale de Sn4Sb6S13 , 1980 .

[29]  L. Palatnik,et al.  Crystal structure of boulangerite , 1978 .

[30]  N. Wang Synthesis and crystal data of a Cu-free meneghinite , 1977 .

[31]  K. Dornberger‐Schiff,et al.  On the Symmetry of OD‐Structures Consisting of Equivalent Layers , 1972 .

[32]  G. F. Claringbull X-Ray Powder Data for Ore Minerals: The Peacock Atlas , 1964 .

[33]  G. D. Rieck,et al.  International tables for X-ray crystallography , 1962 .

[34]  E. Hellner,et al.  A structural proposal for boulangerite , 1960 .

[35]  K. Dornberger‐Schiff On order–disorder structures (OD-structures) , 1956 .

[36]  S. C. Robinson The identity of falkmanite and yenerite with boulangerite , 1948 .

[37]  M. Thaulow Analyse eines Antimonerzes vom Nasafjeld in Lapland , 2022 .