Nonparametric Identification of Anisotropic (Elliptic) Correlations in Spatially Distributed Data Sets

Random fields are useful models of spatially variable quantities, such as those occurring in environmental processes and medical imaging. The fluctuations obtained in most natural data sets are typically anisotropic. The parameters of anisotropy are often determined from the data by means of empirical methods or the computationally expensive method of maximum likelihood. In this paper, we propose a systematic method for the identification of geometric (elliptic) anisotropy parameters of scalar fields. The proposed method is computationally efficient, nonparametric, noniterative, and it applies to differentiable random fields with normal or lognormal probability density functions. Our approach uses sample-based estimates of the random field spatial derivatives that we relate through closed form expressions to the anisotropy parameters. This paper focuses on two spatial dimensions. We investigate the performance of the method on synthetic samples with Gaussian and Matern correlations, both on regular and irregular lattices. The systematic anisotropy detection provides an important preprocessing stage of the data. Knowledge of the anisotropy parameters, followed by suitable rotation and rescaling transformations restores isotropy thus allowing classical interpolation and signal processing methods to be applied.

[1]  Peter K. Kitanidis,et al.  Statistical estimation of polynomial generalized covariance functions and hydrologic applications , 1983 .

[2]  C. Woodcock,et al.  Autocorrelation and regularization in digital images. I. Basic theory , 1988 .

[3]  Chunsheng Ma,et al.  Linear combinations of space-time covariance functions and variograms , 2005, IEEE Transactions on Signal Processing.

[4]  Timothy C. Coburn,et al.  Geostatistics for Natural Resources Evaluation , 2000, Technometrics.

[5]  S. Berman Stationary and Related Stochastic Processes , 1967 .

[6]  A. Savitzky,et al.  Smoothing and Differentiation of Data by Simplified Least Squares Procedures. , 1964 .

[7]  A. Yaglom Correlation Theory of Stationary and Related Random Functions I: Basic Results , 1987 .

[8]  Eusebio Bernabeu,et al.  Uncertainty Estimation by Convolution Using Spatial Statistics , 2006, IEEE Transactions on Image Processing.

[9]  Dionissios T. Hristopulos Approximate methods for explicit calculations of non-Gaussian moments , 2006 .

[10]  Michael L. Stein,et al.  Local stationarity and simulation of self-affine intrinsic random functions , 2001, IEEE Trans. Inf. Theory.

[11]  M. Chica-Olmo,et al.  The Fourier Integral Method: An efficient spectral method for simulation of random fields , 1993 .

[12]  Alan E. Gelfand,et al.  Bayesian Modeling and Inference for Geometrically Anisotropic Spatial Data , 1999 .

[13]  Dionissios T. Hristopulos,et al.  Analytic Properties and Covariance Functions for a New Class of Generalized Gibbs Random Fields , 2006, IEEE Transactions on Information Theory.

[14]  Douglas B. Williams,et al.  Robust estimation of structured covariance matrices , 1993, IEEE Trans. Signal Process..

[15]  John G. Proakis,et al.  Probability, random variables and stochastic processes , 1985, IEEE Trans. Acoust. Speech Signal Process..

[16]  Assia Kourgli,et al.  Texture primitives description and segmentation using variography and mathematical morphology , 2004, 2004 IEEE International Conference on Systems, Man and Cybernetics (IEEE Cat. No.04CH37583).

[17]  Fernando Pellon de Miranda,et al.  The semivariogram in comparison to the co-occurrence matrix for classification of image texture , 1998, IEEE Trans. Geosci. Remote. Sens..

[18]  Jinjun Xiong,et al.  Robust Extraction of Spatial Correlation , 2006, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[19]  Dionissios T. Hristopulos,et al.  An application of Spartan spatial random fields in environmental mapping: focus on automatic mapping capabilities , 2008 .

[20]  S. SIAMJ. SPARTAN GIBBS RANDOM FIELD MODELS FOR GEOSTATISTICAL APPLICATIONS∗ , 2003 .

[21]  R. Creswick,et al.  Introduction to Renormalization Group Methods in Physics , 1991 .

[22]  Juan Ruiz-Alzola,et al.  Geostatistical Medical Image Registration , 2003, MICCAI.

[23]  harald Cramer,et al.  Stationary And Related Stochastic Processes , 1967 .

[24]  Peter K. Kitanidis,et al.  PARAMETRIC ESTIMATION OF COVARIANCES OF REGIONALIZED VARIABLES , 1987 .

[25]  Rob W. Parrott,et al.  Towards statistically optimal interpolation for 3D medical imaging , 1993, IEEE Engineering in Medicine and Biology Magazine.

[26]  R. Lord,et al.  THE USE OF THE HANKEL TRANSFORM IN STATISTICS: I. GENERAL THEORY AND EXAMPLES , 1954 .

[27]  Paul M. Thompson,et al.  Brain structural mapping using a novel hybrid implicit/explicit framework based on the level-set method , 2005, NeuroImage.

[28]  D. Sandwell BIHARMONIC SPLINE INTERPOLATION OF GEOS-3 AND SEASAT ALTIMETER DATA , 1987 .

[29]  Stephan R. Sain Analysis and Modelling of Spatial Environmental Data , 2006 .

[30]  Christian Lantuéjoul,et al.  Geostatistical Simulation: Models and Algorithms , 2001 .

[31]  Roger Woodard,et al.  Interpolation of Spatial Data: Some Theory for Kriging , 1999, Technometrics.

[32]  Jianwen Luo,et al.  Properties of Savitzky-Golay digital differentiators , 2005, Digit. Signal Process..

[33]  Michael Unser,et al.  Mate/spl acute/rn B-splines and the optimal reconstruction of signals , 2006, IEEE Signal Processing Letters.

[34]  B. Mandelbrot,et al.  Fractional Brownian Motions, Fractional Noises and Applications , 1968 .

[35]  Dimitri Van De Ville,et al.  Non-Ideal Sampling and Adapted Reconstruction Using the Stochastic Matern Model , 2006, 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings.

[36]  Thierry Blu,et al.  Generalized smoothing splines and the optimal discretization of the Wiener filter , 2005, IEEE Transactions on Signal Processing.

[37]  Chang-Tsun Li,et al.  A Class of Discrete Multiresolution Random Fields and Its Application to Image Segmentation , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[38]  J. Steinier,et al.  Smoothing and differentiation of data by simplified least square procedure. , 1972, Analytical chemistry.

[39]  Bruno O. Shubert,et al.  Random variables and stochastic processes , 1979 .

[40]  Feng Gui,et al.  Application of variogram function in image analysis , 2004, Proceedings 7th International Conference on Signal Processing, 2004. Proceedings. ICSP '04. 2004..

[41]  Peter Swerling,et al.  Statistical properties of the contours of random surfaces , 1962, IRE Trans. Inf. Theory.

[42]  Bernd Girod,et al.  Motion-compensating prediction with fractional-pel accuracy , 1993, IEEE Trans. Commun..

[43]  Eulogio Pardo-Igúzquiza,et al.  Maximum Likelihood Estimation of Spatial Covariance Parameters , 1998 .

[44]  Keith J. Worsley,et al.  Applications of Random Fields in Human Brain Mapping , 2001 .