Undulatory swimming in viscoelastic fluids.

The effects of fluid elasticity on the swimming behavior of the nematode Caenorhabditis elegans are experimentally investigated by tracking the nematode's motion and measuring the corresponding velocity fields. We find that fluid elasticity hinders self-propulsion. Compared to Newtonian solutions, fluid elasticity leads to up to 35% slower propulsion. Furthermore, self-propulsion decreases as elastic stresses grow in magnitude in the fluid. This decrease in self-propulsion in viscoelastic fluids is related to the stretching of flexible molecules near hyperbolic points in the flow.

[1]  R. Larson The Structure and Rheology of Complex Fluids , 1998 .

[2]  S. Childress Mechanics of swimming and flying: Frontmatter , 1977 .

[3]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[4]  B. Bainbridge,et al.  Genetics , 1981, Experientia.