Syntomic cohomology and $p$-adic motivic cohomology

We prove a mixed characteristic analog of the Beilinson-Lichtenbaum Conjecture for p-adic motivic cohomology. It gives a description, in the stable range, of p-adic motivic cohomology (defined using algebraic cycles) in terms of differential forms. This generalizes a result of Geisser from small Tate twists to all twists and uses as a critical new ingredient the comparison theorem between syntomic complexes and p-adic nearby cycles proved recently in Colmez-Niziol.

[1]  M. Kurihara A Note on p . adic Etale Cohomology , 2021 .

[2]  Wiesława Nizioł,et al.  Syntomic cohomology and p-adic regulators for varieties over p-adic fields , 2013, 1309.7620.

[3]  Pierre Colmez,et al.  Syntomic complexes and p-adic nearby cycles , 2015, 1505.06471.

[4]  Kanetomo Sato Cycle classes for $p$-adic étale Tate twists and the image of $p$-adic regulators , 2010, Documenta Mathematica.

[5]  H. Esnault,et al.  p-adic deformation of algebraic cycle classes , 2012, 1203.2776.

[6]  A. Beilinson On the crystalline period map , 2011, 1111.3316.

[7]  C. Weibel The norm residue isomorphism theorem , 2009 .

[8]  W. Lawa SEMISTABLE CONJECTURE VIA K-THEORY , 2007 .

[9]  Wiesława Nizioł p-adic motivic cohomology in arithmetic , 2006 .

[10]  Thomas H. Geisser Motivic cohomology over Dedekind rings , 2004 .

[11]  Pierre Lorenzon Logarithmic Hodge–Witt Forms and Hyodo–Kato Cohomology☆ , 2002 .

[12]  C. Breuil,et al.  Torsion étale and crystalline cohomologies , 2002 .

[13]  P. Berthelot Cohomologies p-adiques et applications arithmétiques , 2002 .

[14]  Atsushi Shiho,et al.  Crystalline Fundamental Groups II — Log Convergent Cohomology and Rigid Cohomology , 2002 .

[15]  Thomas H. Geisser,et al.  The Bloch-Kato conjecture and a theorem of Suslin-Voevodsky , 2001 .

[16]  Amnon Besser,et al.  Syntomic regulators andp-adic integration I: Rigid syntomic regulators , 2000 .

[17]  Thomas H. Geisser,et al.  The K-theory of fields in characteristic p , 2000 .

[18]  Takeshi Tsuji On the $p$ adic nearby cycles of log smooth families , 2000 .

[19]  A. Suslin,et al.  Bloch-Kato Conjecture and Motivic Cohomology with Finite Coefficients , 2000 .

[20]  Wiesława Nizioł Crystalline conjecture via K-theory , 1998 .

[21]  Takeshi Tsuji -adic Hodge theory in the semi-stable reduction case. , 1998 .

[22]  Atsushi Shiho ON CRYSTALLINE FUNDAMENTAL GROUPS , 1997 .

[23]  Kazuya Kato,et al.  Syntomic cohomology and p-adic étale cohomology , 1992 .

[24]  M. Gros,et al.  Régulateurs syntomiques et valeurs de fonctionsL p-adiques I , 1990 .

[25]  A. Ogus The Convergent Topos in Characteristic p , 1990 .

[26]  Kazuya Kato On $p$-Adic Vanishing Cycles (Application of ideas of Fontaine-Messing) , 1987 .

[27]  K. Ribet Current Trends in Arithmetical Algebraic Geometry , 1987 .

[28]  S. Bloch,et al.  p-Adic etale cohomology , 1986 .

[29]  Spencer Bloch,et al.  Algebraic cycles and higher K-theory , 1986 .

[30]  J. Colliot-Thélène,et al.  TORSION DANS LE GROUPE DE CHOW DE CODIMENSION DEUX , 1983 .

[31]  P. Berthelot,et al.  F-isocrystals and de Rham cohomology. I , 1983 .

[32]  L. Illusie Complexe de de Rham-Witt et cohomologie cristalline , 1979 .

[33]  W. Lawa COHOMOLOGY OF CRYSTALLINE SMOOTH SHEAVES , 2022 .