A review on highly ordered, vertically oriented TiO2 nanotube arrays: Fabrication, material properties, and solar energy applications

[1]  C. Koch,et al.  Nanostructured Materials: Processing, Properties and Applications , 2006 .

[2]  C. Grimes,et al.  An electrochemical strategy to incorporate nitrogen in nanostructured TiO2 thin films: modification of bandgap and photoelectrochemical properties , 2006 .

[3]  Craig A. Grimes,et al.  Enhanced photoelectrochemical-response in highly ordered TiO2 nanotube-arrays anodized in boric acid containing electrolyte , 2006 .

[4]  Craig A. Grimes,et al.  Visible light photoelectrochemical and water-photoelectrolysis properties of titania nanotube arrays , 2006 .

[5]  Craig A. Grimes,et al.  Fabrication of hydrogen sensors with transparent titanium oxide nanotube-array thin films as sensing elements , 2006 .

[6]  Craig A Grimes,et al.  Use of highly-ordered TiO(2) nanotube arrays in dye-sensitized solar cells. , 2006, Nano letters.

[7]  C. Grimes,et al.  Electrochemically synthesized CdS nanoparticle-modified TiO2 nanotube-array photoelectrodes : Preparation, characterization, and application to photoelectrochemical cells , 2006 .

[8]  Craig A. Grimes,et al.  Unprecedented ultra-high hydrogen gas sensitivity in undoped titania nanotubes , 2006 .

[9]  K. Leou,et al.  Direct synthesis of suspended single-walled carbon nanotubes crossing plasma sharpened carbon nanofibre tips , 2006 .

[10]  Jan M. Macak,et al.  Smooth anodic TiO2 nanotubes. , 2005, Angewandte Chemie.

[11]  P. Wu,et al.  Effects of nitrogen doping on optical properties of TiO2 thin films , 2005 .

[12]  K. G. Ong,et al.  Numerical simulation of light propagation through highly-ordered titania nanotube arrays: dimension optimization for improved photoabsorption. , 2005, Journal of nanoscience and nanotechnology.

[13]  Eugeniu Balaur,et al.  Wetting behaviour of layers of TiO2 nanotubes with different diameters , 2005 .

[14]  C. Grimes,et al.  A study on the spectral photoresponse and photoelectrochemical properties of flame-annealed titania nanotube-arrays , 2005 .

[15]  Takayuki Kitamura,et al.  Origin of enhancement in open-circuit voltage by adding ZnO to nanocrystalline SnO2 in dye-sensitized solar cells. , 2005, The journal of physical chemistry. B.

[16]  Craig A. Grimes,et al.  Transparent Highly Ordered TiO2 Nanotube Arrays via Anodization of Titanium Thin Films , 2005 .

[17]  Craig A Grimes,et al.  Fabrication of highly ordered TiO2 nanotube arrays using an organic electrolyte. , 2005, The journal of physical chemistry. B.

[18]  C. Grimes,et al.  Water-photolysis properties of micron-length highly-ordered titania nanotube-arrays. , 2005, Journal of nanoscience and nanotechnology.

[19]  Jung-Yup Lee,et al.  Electronic properties of N- and C-doped TiO2 , 2005 .

[20]  Peidong Yang,et al.  Nanowire dye-sensitized solar cells , 2005, Nature materials.

[21]  Xie Quan,et al.  Preparation of titania nanotubes and their environmental applications as electrode. , 2005, Environmental science & technology.

[22]  Patrik Schmuki,et al.  High-aspect-ratio TiO2 nanotubes by anodization of titanium. , 2005, Angewandte Chemie.

[23]  T. Ohshima,et al.  Preparation of nitrogen-doped titanium oxide thin film using a PLD method as parameters of target material and nitrogen concentration ratio in nitrogen/oxygen gas mixture , 2005 .

[24]  James L. Gole,et al.  Formation of Oxynitride as the Photocatalytic Enhancing Site in Nitrogen‐Doped Titania Nanocatalysts: Comparison to a Commercial Nanopowder , 2005 .

[25]  Craig A. Grimes,et al.  The effect of electrolyte composition on the fabrication of self-organized titanium oxide nanotube arrays by anodic oxidation , 2005 .

[26]  R. Gordon,et al.  A Special Issue on Diatom Nanotechnology , 2005 .

[27]  Craig A Grimes,et al.  Enhanced photocleavage of water using titania nanotube arrays. , 2005, Nano letters.

[28]  M. Grätzel Corrigendum to “Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells” [J. Photochem. Photobiol. A: Chem. 164 (2004) 3–14] , 2004 .

[29]  S. R. Biaggio,et al.  XPS characterization of anodic titanium oxide films grown in phosphate buffer solutions , 2004 .

[30]  S. Haque,et al.  The origin of slow electron recombination processes in dye-sensitized solar cells with alumina barrier coatings , 2004 .

[31]  Craig A. Grimes,et al.  Photoelectrochemical properties of titania nanotubes , 2004 .

[32]  R. Tenne,et al.  Inorganic nanotubes , 2004, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[33]  C. Grimes,et al.  A titania nanotube-array room-temperature sensor for selective detection of hydrogen at low concentrations. , 2004, Journal of nanoscience and nanotechnology.

[34]  A. Rakhshani,et al.  Photocurrent spectroscopy of solution-grown CdS films annealed in CdCl2 vapour , 2004 .

[35]  J. Augustynski,et al.  Spectral Photoresponses of Carbon-Doped TiO2 Film Electrodes , 2004 .

[36]  M. Kiuchi,et al.  Structural and optical properties of titanium dioxide films deposited by reactive magnetron sputtering in pure oxygen plasma , 2004 .

[37]  Craig A. Grimes,et al.  A room-temperature TiO2-nanotube hydrogen sensor able to self-clean photoactively from environmental contamination , 2004 .

[38]  Craig A. Grimes,et al.  A Self-Cleaning, Room-Temperature Titania-Nanotube Hydrogen Gas Sensor , 2003 .

[39]  Craig A. Grimes,et al.  Fabrication of tapered, conical-shaped titania nanotubes , 2003 .

[40]  A. J. Frank,et al.  Transport-Limited Recombination of Photocarriers in Dye-Sensitized Nanocrystalline TiO2 Solar Cells , 2003 .

[41]  Huifang Xu,et al.  Large oriented arrays and continuous films of TiO(2)-based nanotubes. , 2003, Journal of the American Chemical Society.

[42]  E. Kim,et al.  Comparison of optical and photocatalytic properties of TiO2 thin films prepared by electron-beam evaporation and sol–gel dip-coating , 2003 .

[43]  T. Umebayashi,et al.  Fabrication of TiO2 photocatalysts by oxidative annealing of TiC , 2003 .

[44]  S. Yoshikawa,et al.  Formation of Titania Nanotubes and Applications for Dye-Sensitized Solar Cells , 2003 .

[45]  Hidemoto Nakagawa,et al.  A room-temperature operated hydrogen leak sensor , 2003 .

[46]  Noriya Izu,et al.  Nano-structured thin-film Pt catalyst for thermoelectric hydrogen gas sensor , 2003 .

[47]  Kurt D. Benkstein,et al.  Influence of the percolation network geometry on electron transport in dye-sensitized titanium dioxide solar cells , 2003 .

[48]  K. Wada,et al.  Highly Porous (TiO2-SiO2-TeO2)/Al2O3/TiO2 Composite Nanostructures on Glass with Enhanced Photocatalysis Fabricated by Anodization and Sol-Gel Process. , 2003, The journal of physical chemistry. B.

[49]  G. Thompson,et al.  Development of porous anodic films on 2014-T4 aluminium alloy in tetraborate electrolyte , 2003 .

[50]  S. Basu,et al.  Studies on Ru/3C-SiC Schottky Junctions for High Temperature Hydrogen Sensors , 2003 .

[51]  Yuka Watanabe,et al.  Nitrogen-Concentration Dependence on Photocatalytic Activity of TiO2-xNx Powders , 2003 .

[52]  H. Föll,et al.  Organic and aqueous electrolytes used for etching macro- and mesoporous silicon , 2003 .

[53]  Craig A. Grimes,et al.  Extreme Changes in the Electrical Resistance of Titania Nanotubes with Hydrogen Exposure , 2003 .

[54]  Patrik Schmuki,et al.  Self-Organized Porous Titanium Oxide Prepared in H 2 SO 4 / HF Electrolytes , 2003 .

[55]  D. Eder,et al.  Stoichiometry of “titanium suboxide” , 2003 .

[56]  Craig A. Grimes,et al.  A Sentinel Sensor Network for Hydrogen Sensing , 2003 .

[57]  Shiou-Ying Cheng A hydrogen sensitive Pd/GaAs Schottky diode sensor , 2003 .

[58]  Ning Wang,et al.  Formation mechanism of TiO2 nanotubes , 2003 .

[59]  Craig A. Grimes,et al.  Crystallization and high-temperature structural stability of titanium oxide nanotube arrays , 2003 .

[60]  H. Föll,et al.  Formation and application of porous silicon , 2002 .

[61]  K. Asai,et al.  Analysis of electronic structures of 3d transition metal-doped TiO 2 based on band calculations , 2002 .

[62]  W. Ingler,et al.  Efficient Photochemical Water Splitting by a Chemically Modified n-TiO2 , 2002, Science.

[63]  Qing Chen,et al.  Trititanate nanotubes made via a single alkali treatment , 2002 .

[64]  L. Anicai,et al.  Structural study of anodic films formed on aluminum in nitric acid electrolyte , 2002 .

[65]  Fa-min Liu,et al.  Surface and optical properties of nanocrystalline anatase titania films grown by radio frequency reactive magnetron sputtering , 2002 .

[66]  M. Shirai,et al.  Application of Titania Nanotubes to a Dye-sensitized Solar Cell , 2002 .

[67]  K. Hanabusa,et al.  Preparation of helical transition-metal oxide tubes using organogelators as structure-directing agents. , 2002, Journal of the American Chemical Society.

[68]  V. C. Sahni,et al.  Passivated thick film catalytic type H2 sensor operating at low temperature , 2002 .

[69]  S. Shinkai,et al.  Creation of Novel Helical Ribbon and Double-Layered Nanotube TiO2 Structures Using an Organogel Template , 2002 .

[70]  Makoto Egashira,et al.  High H2 sensing performance of anodically oxidized TiO2 film contacted with Pd , 2002 .

[71]  Makoto Egashira,et al.  Preparation and gas-sensing properties of thermally stable mesoporous SnO2 , 2002 .

[72]  Martin Eickhoff,et al.  Hydrogen response mechanism of Pt-GaN Schottky diodes , 2002 .

[73]  P. Kamat,et al.  Interparticle electron transfer between size-quantized CdS and TiO2 semiconductor nanoclustersDedicated to Professor Frank Wilkinson on the occasion of his retirement. , 2002 .

[74]  T. Yamaki,et al.  Formation of TiO2−xFx compounds in fluorine-implanted TiO2 , 2002 .

[75]  Craig A. Grimes,et al.  Titanium oxide nanotube arrays prepared by anodic oxidation , 2001 .

[76]  M. Moskovits,et al.  Highly regular anatase nanotubule arrays fabricated in porous anodic templates , 2001 .

[77]  Jing Sun,et al.  Synthesis, Characterization, and Photoactivity of Nanosized Palladium Clusters Deposited on Titania-Modified Mesoporous MCM-41 , 2001 .

[78]  Peter Hoffmann,et al.  Tomorrow's Energy: Hydrogen, Fuel Cells, and the Prospects for a Cleaner Planet , 2001 .

[79]  R. Asahi,et al.  Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides , 2001, Science.

[80]  R. Asahi,et al.  Band-Gap Narrowing of Titanium Dioxide by Nitrogen Doping , 2001 .

[81]  T Albrektsson,et al.  The electrochemical oxide growth behaviour on titanium in acid and alkaline electrolytes. , 2001, Medical engineering & physics.

[82]  H. Matsumoto,et al.  A solid electrolyte hydrogen sensor with an electrochemically-supplied hydrogen standard , 2001 .

[83]  M. Grätzel Photoelectrochemical cells : Materials for clean energy , 2001 .

[84]  H. Föll,et al.  Crystal Orientation Dependence of Macropore Formation in n-Type Silicon Using Organic Electrolytes , 2000 .

[85]  Stuart Licht,et al.  Efficient Solar Water Splitting, Exemplified by RuO2-Catalyzed AlGaAs/Si Photoelectrolysis , 2000 .

[86]  S. Yoshikawa,et al.  Formation of Titania Nanotubes with High Photo-Catalytic Activity , 2000 .

[87]  A. Züttel,et al.  Thermodynamic aspects of the interaction of hydrogen with Pd clusters , 2000 .

[88]  Hidemoto Nakagawa,et al.  A fiber-optic evanescent-wave hydrogen gas sensor using palladium-supported tungsten oxide , 2000 .

[89]  M. Mishchenko,et al.  Efficient finite-difference time-domain scheme for light scattering by dielectric particles: application to aerosols. , 2000, Applied optics.

[90]  X. Bao,et al.  Investigation of oxygen adsorption on Pd (100) with defects , 2000 .

[91]  K. Shimizu,et al.  Cellular porous anodic alumina grown in neutral organic electrolyte. I. Structure, composition, and properties of the films , 2000 .

[92]  D. Vanmaekelbergh,et al.  Recombination of Photogenerated Charge Carriers in Nanoporous Gallium Phosphide , 2000 .

[93]  James A. Anderson,et al.  Determination of the nature and reactivity of copper sites in Cu–TiO2 catalysts , 2000 .

[94]  D. Bahnemann,et al.  A novel preparation of iron-doped TiO2 nanoparticles with enhanced photocatalytic activity , 2000 .

[95]  C. Reddy,et al.  Room Temperature Hydrogen Sensor Based on SnO2 : La2 O 3 , 2000 .

[96]  Marc Aucouturier,et al.  Anodic oxidation of titanium and TA6V alloy in chromic media. An electrochemical approach , 1999 .

[97]  B. Sutapun,et al.  Pd-coated elastooptic fiber optic Bragg grating sensors for multiplexed hydrogen sensing , 1999 .

[98]  Matteo Ferroni,et al.  Nanostructured pure and Nb-doped TiO2 as thick film gas sensors for environmental monitoring , 1999 .

[99]  Marc Aucouturier,et al.  Structure and physicochemistry of anodic oxide films on titanium and TA6V alloy , 1999 .

[100]  N. Maffei,et al.  A HYDROGEN SENSOR BASED ON A HYDROGEN ION CONDUCTING SOLID ELECTROLYTE , 1999 .

[101]  F. Amanullah,et al.  Development of spray technique for the preparation of thin films and characterization of tin oxide transparent conductors , 1999 .

[102]  S. Cai,et al.  The photoelectrochemistry of transition metal-ion-doped TiO2 nanocrystalline electrodes and higher solar cell conversion efficiency based on Zn2+-doped TiO2 electrode , 1999 .

[103]  K. Vijayamohanan,et al.  Selective hydrogen sensing properties of surface functionalized tin oxide , 1999 .

[104]  H. Yamashita,et al.  Characterization of metal ion-implanted titanium oxide photocatalysts operating under visible light irradiation. , 1999, Journal of synchrotron radiation.

[105]  D. Vanmaekelbergh,et al.  DRIVING FORCE FOR ELECTRON TRANSPORT IN POROUS NANOSTRUCTURED PHOTOELECTRODES , 1999 .

[106]  H. Imai,et al.  Direct preparation of anatase TiO2 nanotubes in porous alumina membranes , 1999 .

[107]  Claude Lévy-Clément,et al.  Macropore Formation on p‐Type Si in Fluoride Containing Organic Electrolytes , 1999 .

[108]  Sheikh A. Akbar,et al.  Ceramic Based Resistive Sensors , 1998 .

[109]  Kornelius Nielsch,et al.  Hexagonal pore arrays with a 50-420 nm interpore distance formed by self-organization in anodic alumina , 1998 .

[110]  H. Tada,et al.  A Promoting Effect of NH4F Addition on the Photocatalytic Activity of Sol-Gel TiO2 Films , 1998 .

[111]  Frank Müller,et al.  Self-organized formation of hexagonal pore arrays in anodic alumina , 1998 .

[112]  Koichi Niihara,et al.  Formation of titanium oxide nanotube , 1998 .

[113]  R. M. Walton,et al.  Gas sensing based on surface oxidation/reduction of platinum-titania thin films I. Sensing film activation and characterization , 1998 .

[114]  U. Roland,et al.  On the nature of spilt-over hydrogen , 1997 .

[115]  G. Thompson,et al.  Porous anodic alumina: fabrication, characterization and applications , 1997 .

[116]  Peter K. Dorhout,et al.  Sol−Gel Template Synthesis of Semiconductor Nanostructures , 1997 .

[117]  Stephen D. Gedney,et al.  EFFICIENT IMPLEMENTATION OF THE UNIAXIAL-BASED PML MEDIA IN THREE-DIMENSIONAL NONORTHOGONAL COORDINATES WITH THE USE OF THE FDTD TECHNIQUE , 1997 .

[118]  M. Kundu,et al.  Synthesis and study of organically capped ultra small clusters of cadmium sulphide , 1997 .

[119]  S. Basu,et al.  Room-temperature hydrogen sensors based on ZnO , 1997 .

[120]  Hong-Ming Lin,et al.  Gas-sensing properties of nanocrystalline TiO2 , 1997 .

[121]  J. Lagemaat,et al.  Enhancement of the light‐to‐current conversion efficiency in an n‐SiC/solution diode by porous etching , 1996 .

[122]  Norio Miura,et al.  High-temperature hydrogen sensor based on stabilized zirconia and a metal oxide electrode , 1996 .

[123]  P. Hoyer,et al.  Formation of a Titanium Dioxide Nanotube Array , 1996 .

[124]  D. Vanmaekelbergh,et al.  Greatly Enhanced Sub‐Bandgap Photocurrent in Porous GaP Photoanodes , 1996 .

[125]  Pandey Handbook of semiconductor electrodeposition , 1996 .

[126]  Dong Heon Lee,et al.  Metalorganic chemical vapor deposition of TiO2:N anatase thin film on Si substrate , 1995 .

[127]  G. Patermarakis,et al.  The mechanism of growth of porous anodic Al2O3 films on aluminium at high film thicknesses , 1995 .

[128]  D. Chopra,et al.  X-ray photoelectron study of TiN/SiO2 and TiN/Si interfaces , 1995 .

[129]  Allen Taflove,et al.  Computational Electrodynamics the Finite-Difference Time-Domain Method , 1995 .

[130]  J. Yates,et al.  Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results , 1995 .

[131]  N. Yamazoe,et al.  Sensing characteristics of ISFET-based hydrogen sensor using proton-conductive thick film , 1995 .

[132]  G. Patermarakis,et al.  Mathematical models for the anodization conditions and structural features of porous anodic Al{sub 2}O{sub 3} films on aluminum , 1995 .

[133]  Anders Hagfeldt,et al.  Light-Induced Redox Reactions in Nanocrystalline Systems , 1995 .

[134]  R. Salzer,et al.  Investigations on hydrogen spillover. Part 1.—Electrical conductivity studies on titanium dioxide , 1995 .

[135]  David E. Williams,et al.  Theory of self-diagnostic sensor array devices using gas-sensitive resistors , 1995 .

[136]  Detection of sensor poisoning using self-diagnostic gas sensors , 1995 .

[137]  J. T. Ranney,et al.  The Surface Science of Metal Oxides , 1995 .

[138]  Wonyong Choi,et al.  The Role of Metal Ion Dopants in Quantum-Sized TiO2: Correlation between Photoreactivity and Charge Carrier Recombination Dynamics , 1994 .

[139]  S. Basu,et al.  Modified heterojunction based on zinc oxide thin film for hydrogen gas-sensor application , 1994 .

[140]  Hikaru Kobayashi,et al.  Reactions of hydrogen at the interface of palladium-titanium dioxide Schottky diodes as hydrogen sensors, studied by workfunction and electrical characteristic measurements , 1994 .

[141]  Paul A. Kohl,et al.  The Electrochemical Oxidation of Silicon and Formation of Porous Silicon in Acetonitrile , 1994 .

[142]  Horst Weller,et al.  Quantum-Sized PbS, CdS, Ag2S, Sb2S3, and Bi2S3 Particles as Sensitizers for Various Nanoporous Wide-Bandgap Semiconductors , 1994 .

[143]  B. K. Hodnett Photocatalytic purification and treatment of water and air : by D.F. Ollis and H. Al-Ekabi (Editors), Elsevier Science Publishers BV, Amsterdam, 1993, ISBN 0-444-89855-7, xiv + 820 pp., f450.00/$257.25 , 1994 .

[144]  B. Hwang,et al.  Kinetic model of anodic oxidation of titanium in sulphuric acid , 1993 .

[145]  Mohammad Khaja Nazeeruddin,et al.  Conversion of light to electricity by cis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes , 1993 .

[146]  D. Macdonald On the Formation of Voids in Anodic Oxide Films on Aluminum , 1993 .

[147]  Xenophon E. Verykios,et al.  Effects of altervalent cation doping of titania on its performance as a photocatalyst for water cleavage , 1993 .

[148]  W. Smyrl,et al.  Photoelectrochemical investigations of thin metal-oxide films : TiO2, Al2O3, and HfO2 on the parent metals , 1993 .

[149]  A. Burggraaf,et al.  Textural evolution and phase transformation in titania membranes: Part 1.—Unsupported membranes , 1993 .

[150]  B. Podlepetsky,et al.  The influence of technological factors on the hydrogen sensitivity of MOSFET sensors , 1992 .

[151]  Sheikh A. Akbar,et al.  Carbon Monoxide and Hydrogen Detection by Anatase Modification of Titanium Dioxide , 1992 .

[152]  Harland G. Tompkins,et al.  Titanium nitride oxidation chemistry: An x‐ray photoelectron spectroscopy study , 1992 .

[153]  V. Parkhutik,et al.  Theoretical modelling of porous oxide growth on aluminium , 1992 .

[154]  D. Chopra,et al.  X‐ray Photoelectron Study of TiN , 1992 .

[155]  M. Kozlowski,et al.  Photoelectrochemical Measurements of Thin Oxide Films: Multiple Internal Reflection Effects , 1992 .

[156]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[157]  M. Grätzel,et al.  A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films , 1991, Nature.

[158]  Michael A. Butler,et al.  Fiber Optic Sensor for Hydrogen Concentrations near the Explosive Limit , 1991 .

[159]  P. Lenas,et al.  Kinetics of growth of porous anodic Al2O3 films on A1 metal , 1991 .

[160]  Andreas Mandelis,et al.  Solid‐state sensors for trace hydrogen gas detection , 1990 .

[161]  N. Yamazoe,et al.  Cordless solid-state hydrogen sensor using proton-conductor thick film , 1990 .

[162]  A. Henglein,et al.  Small-particle research: physicochemical properties of extremely small colloidal metal and semiconductor particles , 1989 .

[163]  N. Serpone,et al.  Photocatalysis: Fundamentals and Applications , 1989 .

[164]  M. Madou,et al.  Chemical Sensing With Solid State Devices , 1989 .

[165]  J. Delplancke,et al.  Galvanostatic anodization of titanium—II. Reactions efficiencies and electrochemical behaviour model , 1988 .

[166]  M. Lübke,et al.  A particle size effect in the sensitization of TiO2 electrodes by a CdS deposit , 1986 .

[167]  S. Fonash,et al.  An extremely sensitive heterostructure for parts per million detection of hydrogen in oxygen , 1985 .

[168]  D. Partlow,et al.  Formation of broad band antireflective coatings on fused silica for high power laser applications , 1985 .

[169]  M. Schiavello,et al.  Photoelectrochemistry, photocatalysis, and photoreactors : fundamentals and developments , 1985 .

[170]  J. Wolf,et al.  Low-temperature oxygen diffusion in alpha titanium characterized by Auger sputter profiling , 1983 .

[171]  Masahiro Nishikawa,et al.  Hall measurement studies and an electrical conduction model of tin oxide ultrafine particle films , 1982 .

[172]  S. Ashok,et al.  A study of Pd/Si MIS Schottky barrier diode hydrogen detector , 1981, IEEE Transactions on Electron Devices.

[173]  Toshimasa Matsuoka,et al.  A study on a palladium-titanium oxide Schottky diode as a detector for gaseous components , 1980 .

[174]  Jun Wang,et al.  Mechanisms for hydrogen diffusion in Ti O 2 , 1979 .

[175]  S. N. Subbarao,et al.  Electrical and optical properties of the system TiO2-xFx , 1979 .

[176]  G. Thompson,et al.  Nucleation and growth of porous anodic films on aluminium , 1978, Nature.

[177]  H. Michaelson The work function of the elements and its periodicity , 1977 .

[178]  J. Augustynski,et al.  XPS study of the interactions between aluminium metal and nitrate ions , 1976 .

[179]  J. Gasiot,et al.  A simple method for the determination of the optical constants n, k and the thickness of a weakly absorbing thin film , 1976 .

[180]  Ingemar Lundström,et al.  A hydrogen−sensitive MOS field−effect transistor , 1975 .

[181]  O. J. Whittemore,et al.  Pore growth during the initial stages of sintering ceramics , 1974 .

[182]  A. Fujishima,et al.  Electrochemical Photolysis of Water at a Semiconductor Electrode , 1972, Nature.

[183]  G. C. Wood,et al.  The anodizing of aluminium in sulphate solutions , 1970 .

[184]  J. Tauc,et al.  Absorption edge and internal electric fields in amorphous semiconductors , 1970 .

[185]  T. C. Downie,et al.  The dissolution of porous oxide films on aluminium , 1970 .

[186]  Mahiko Nagao,et al.  Relation between the amounts of chemisorbed and physisorbed water on metal oxides , 1969 .

[187]  B. Cullity,et al.  Elements of X-ray diffraction , 1957 .

[188]  M. Hubbert,et al.  Energy from Fossil Fuels. , 1949, Science.