Computing Gröbner fans
暂无分享,去创建一个
[1] David Avis,et al. Reverse Search for Enumeration , 1996, Discret. Appl. Math..
[2] B. Sturmfels. Gröbner bases and convex polytopes , 1995 .
[3] Teo Mora,et al. The Gröbner Fan of an Ideal , 1988, J. Symb. Comput..
[4] Michael Kalkbrener,et al. Converting Bases with the Gröbner Walk , 1997, J. Symb. Comput..
[5] W. Fulton. Introduction to Toric Varieties. , 1993 .
[6] Lorenzo Robbiano,et al. Computational aspects of commutative algebra , 1989 .
[7] Daniel Mall. Gröbner Fans and Projective Schemes , 1998 .
[8] William Fulton,et al. Introduction to Toric Varieties. (AM-131) , 1993 .
[9] Michael Kalkbrener,et al. On the Complexity of Gröbner Bases Conversion , 1999, J. Symb. Comput..
[10] Ian Morrison,et al. Standard Bases and Geometric Invariant Theory I. Initial Ideals and State Polytopes , 1988, J. Symb. Comput..
[11] Wolfgang Küchlin,et al. Walking Faster , 1996, DISCO.
[12] CARLO TRAVERSO,et al. Hilbert Functions and the Buchberger Algorithm , 1996, J. Symb. Comput..
[13] Rekha R. Thomas,et al. Computing tropical varieties , 2007, J. Symb. Comput..
[14] Jörg Rambau,et al. TOPCOM: Triangulations of Point Configurations and Oriented Matroids , 2002 .
[15] G. Björck,et al. A Faster Way to Count the Solution of Inhomogeneous Systems of Algebraic Equations, with Applications to Cyclic n-Roots , 1991, J. Symb. Comput..
[16] Jean-Charles Faugère,et al. Efficient Computation of Zero-Dimensional Gröbner Bases by Change of Ordering , 1993, J. Symb. Comput..
[17] Rekha R. Thomas,et al. Computing gröbner fans of toric ideals , 2000, SIGS.