Computing Gröbner fans

This paper presents algorithms for computing the Grobner fan of an arbitrary polynomial ideal. The computation involves enumeration of all reduced Grobner bases of the ideal. Our algorithms are based on a uniform definition of the Grobner fan that applies to both homogeneous and non-homogeneous ideals and a proof that this object is a polyhedral complex. We show that the cells of a Grobner fan can easily be oriented acyclically and with a unique sink, allowing their enumeration by the memory-less reverse search procedure. The significance of this follows from the fact that Grobner fans are not always normal fans of polyhedra, in which case reverse search applies automatically. Computational results using our implementation of these algorithms in the software package Gfan are included.

[1]  David Avis,et al.  Reverse Search for Enumeration , 1996, Discret. Appl. Math..

[2]  B. Sturmfels Gröbner bases and convex polytopes , 1995 .

[3]  Teo Mora,et al.  The Gröbner Fan of an Ideal , 1988, J. Symb. Comput..

[4]  Michael Kalkbrener,et al.  Converting Bases with the Gröbner Walk , 1997, J. Symb. Comput..

[5]  W. Fulton Introduction to Toric Varieties. , 1993 .

[6]  Lorenzo Robbiano,et al.  Computational aspects of commutative algebra , 1989 .

[7]  Daniel Mall Gröbner Fans and Projective Schemes , 1998 .

[8]  William Fulton,et al.  Introduction to Toric Varieties. (AM-131) , 1993 .

[9]  Michael Kalkbrener,et al.  On the Complexity of Gröbner Bases Conversion , 1999, J. Symb. Comput..

[10]  Ian Morrison,et al.  Standard Bases and Geometric Invariant Theory I. Initial Ideals and State Polytopes , 1988, J. Symb. Comput..

[11]  Wolfgang Küchlin,et al.  Walking Faster , 1996, DISCO.

[12]  CARLO TRAVERSO,et al.  Hilbert Functions and the Buchberger Algorithm , 1996, J. Symb. Comput..

[13]  Rekha R. Thomas,et al.  Computing tropical varieties , 2007, J. Symb. Comput..

[14]  Jörg Rambau,et al.  TOPCOM: Triangulations of Point Configurations and Oriented Matroids , 2002 .

[15]  G. Björck,et al.  A Faster Way to Count the Solution of Inhomogeneous Systems of Algebraic Equations, with Applications to Cyclic n-Roots , 1991, J. Symb. Comput..

[16]  Jean-Charles Faugère,et al.  Efficient Computation of Zero-Dimensional Gröbner Bases by Change of Ordering , 1993, J. Symb. Comput..

[17]  Rekha R. Thomas,et al.  Computing gröbner fans of toric ideals , 2000, SIGS.