Photosensitization of wild and mutant strains of Escherichia coli by meso-tetra (N-methyl-4-pyridyl)porphine.

Wild type Escherichia coli cells as well as some mutant strains lacking specific DNA repair systems are efficiently killed upon visible light-irradiation after 5 min-incubation with meso-tetra(4N-methyl-pyridyl)porphine (T4MPyP). The presence of oxygen is necessary for cell photoinactivation. The porphyrin appears to exert its phototoxic activity largely by impairing some enzymic and transport functions at the level of both the outer and cytoplasmic membrane. Thus, SDS-PAGE electrophoresis shows a gradual attenuation of some transport protein bands as the irradiation proceeds, while a complete loss of lactate and NADH dehydrogenase activities is caused by 15 min-exposure to light. On the other hand, DNA does not represent a critical target of T4MPyP photosensitization as suggested by the closely similar photosensitivity of the wild E. coli and E. coli strains defective for two different DNA repair mechanisms, as well as by the lack of any detectable alteration of the pUC19 plasmids extracted from photosensitized E. coli TG1 cells.

[1]  G. Peterson,et al.  Review of the Folin phenol protein quantitation method of Lowry, Rosebrough, Farr and Randall. , 1979, Analytical biochemistry.

[2]  I. Borissevitch,et al.  Photophysical studies of excited-state characteristics of meso-tetrakis (4-N-methyl-pyridiniumyl) porphyrin bound to DNA. , 1998, Journal of photochemistry and photobiology. B, Biology.

[3]  J. V. van Lier,et al.  Photosensitizing activity of water- and lipid-soluble phthalocyanines on Escherichia coli. , 1990, FEMS microbiology letters.

[4]  J. Sambrook,et al.  Molecular Cloning: A Laboratory Manual , 2001 .

[5]  Z. Malik,et al.  FLUORESCENCE SPECTRAL CHANGES OF HEMATOPORPHYRIN DERIVATIVE UPON BINDING TO LIPID VESICLES, Staphylococcus aureus AND Escherichia coli CELLS , 1985, Photochemistry and photobiology.

[6]  M. Marriott Enzymic activity of purified plasma membranes from the yeast and mycelial forms of Candida albicans. , 1975, Journal of general microbiology.

[7]  U. K. Laemmli,et al.  Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4 , 1970, Nature.

[8]  Z. Malik,et al.  INACTIVATION OF GRAM‐NEGATIVE BACTERIA BY PHOTOSENSITIZED PORPHYRINS , 1992, Photochemistry and photobiology.

[9]  J D Spikes,et al.  Studies on the mechanism of bacteria photosensitization by meso-substituted cationic porphyrins. , 1996, Journal of photochemistry and photobiology. B, Biology.

[10]  J E Gander,et al.  Mechanism of assembly of the outer membrane of Salmonella typhimurium. Isolation and characterization of cytoplasmic and outer membrane. , 1972, The Journal of biological chemistry.

[11]  J. H. Parish,et al.  Photoinactivation of bacteria. Use of a cationic water-soluble zinc phthalocyanine to photoinactivate both gram-negative and gram-positive bacteria. , 1996, Journal of photochemistry and photobiology. B, Biology.

[12]  D. Praseuth,et al.  PHOTOCLEAVAGE OF DNA IN THE PRESENCE OF SYNTHETIC WATER‐SOLUBLE PORPHYRINS , 1986, Photochemistry and photobiology.

[13]  Z. Malik,et al.  Photodynamic inactivation of Gram-negative bacteria: problems and possible solutions. , 1992, Journal of photochemistry and photobiology. B, Biology.

[14]  J Hanania,et al.  New trends in photobiology (Invited review) bactericidal effects of photoactivated porphyrins ― An alternative approach to antimicrobial drugs , 1990 .

[15]  Á. Villanueva,et al.  Meso-substituted cationic porphyrins as efficient photosensitizers of gram-positive and gram-negative bacteria. , 1996, Journal of photochemistry and photobiology. B, Biology.

[16]  C. Baron,et al.  The isolation of bacterial membrane ATPase and nectin. , 1974, Methods in enzymology.

[17]  D. Mansuy,et al.  Structure-activity relationships for DNA photocleavage by cationic porphyrins. , 1993, Journal of photochemistry and photobiology. B, Biology.

[18]  E. Reddi,et al.  Effect of extracellularly generated singlet oxygen on gram-positive and gram-negative bacteria. , 1993, Journal of photochemistry and photobiology. B, Biology.

[19]  R. Munson,et al.  Outer membrane protein profiles of Haemophilus pleuropneumoniae , 1986, Infection and immunity.

[20]  J. V. van Lier,et al.  Photosensitizing activity of water- and lipid-soluble phthalocyanines on prokaryotic and eukaryotic microbial cells. , 1992, Microbios.