Identification of unique neoantigen qualities in long-term survivors of pancreatic cancer

Pancreatic ductal adenocarcinoma is a lethal cancer with fewer than 7% of patients surviving past 5 years. T-cell immunity has been linked to the exceptional outcome of the few long-term survivors, yet the relevant antigens remain unknown. Here we use genetic, immunohistochemical and transcriptional immunoprofiling, computational biophysics, and functional assays to identify T-cell antigens in long-term survivors of pancreatic cancer. Using whole-exome sequencing and in silico neoantigen prediction, we found that tumours with both the highest neoantigen number and the most abundant CD8+ T-cell infiltrates, but neither alone, stratified patients with the longest survival. Investigating the specific neoantigen qualities promoting T-cell activation in long-term survivors, we discovered that these individuals were enriched in neoantigen qualities defined by a fitness model, and neoantigens in the tumour antigen MUC16 (also known as CA125). A neoantigen quality fitness model conferring greater immunogenicity to neoantigens with differential presentation and homology to infectious disease-derived peptides identified long-term survivors in two independent datasets, whereas a neoantigen quantity model ascribing greater immunogenicity to increasing neoantigen number alone did not. We detected intratumoural and lasting circulating T-cell reactivity to both high-quality and MUC16 neoantigens in long-term survivors of pancreatic cancer, including clones with specificity to both high-quality neoantigens and predicted cross-reactive microbial epitopes, consistent with neoantigen molecular mimicry. Notably, we observed selective loss of high-quality and MUC16 neoantigenic clones on metastatic progression, suggesting neoantigen immunoediting. Our results identify neoantigens with unique qualities as T-cell targets in pancreatic ductal adenocarcinoma. More broadly, we identify neoantigen quality as a biomarker for immunogenic tumours that may guide the application of immunotherapies.

Mithat Gönen | Katherine M. Tucker | Jedd D. Wolchok | Gokce Askan | Vinod P. Balachandran | Peter J. Allen | Benjamin D. Greenbaum | Arnold J. Levine | Miriam Merad | Ronald P. DeMatteo | Yasin Senbabaoglu | Daniel K. Wells | Marc Attiyeh | Sacha Gnjatic | L. Andrews | R. Hruban | J. Eshleman | C. Iacobuzio-Donahue | A. Levine | Sancha Martin | S. Leach | M. Gönen | A. Biankin | M. Pajic | N. Waddell | S. Grimmond | J. Wolchok | M. Merad | N. Pavlakis | T. Chan | A. Spigelman | O. Basturk | U. Bhanot | J. Kirk | S. Beghelli | A. Scarpa | P. Timpson | E. Musgrove | R. DeMatteo | N. Riaz | A. Patch | A. Johns | K. Nones | T. Bruxner | Angelika N. Christ | C. Nourse | P. J. Wilson | O. Holmes | S. Kazakoff | C. Leonard | F. Newell | S. Wood | Jianmin Wu | M. Pinese | Marc D. Jones | A. Nagrial | J. Humphris | L. Chantrill | V. Chin | A. Steinmann | A. Chou | J. Samra | N. Merrett | K. Epari | A. Barbour | N. Zeps | N. Jamieson | elliot k fishman | R. Lawlor | V. Corbo | C. Bassi | A. Gill | P. Allen | D. Fearon | M. Scardoni | S. McKay | B. Greenbaum | R. S. Mead | Olivera Grbovic-Huezo | C. Cooper | P. Grimison | S. Gnjatic | T. Merghoub | Y. Şenbabaoğlu | R. Asghari | S. Warren | M. Łuksza | V. Balachandran | Mary B. Hodgin | J. Fawcett | A. Ruszkiewicz | M. Attiyeh | M. Texler | V. Makarov | G. Askan | C. Sandroussi | C. Vennin | P. Mukhopadhyay | A. Clouston | R. Zappasodi | Mohsen Abu-Akeel | R. Remark | A. Mittal | P. Cosman | Christine A. Iacobuzio-Donahue | D. Pavey | V. Addala | Romain Remark | M. Nikfarjam | Steven D. Leach | A. Stoita | Vladimir Makarov | Marta Łuksza | Julia n. Zhao | John Alec Moral | Brian herbst | Umesh Bhanot | Charles Ian ormsby Cary | olivera Grbovic-huezo | Benjamin Medina | Jennifer Zhang | Jennifer Loo | Joseph Saglimbeni | Mohsen Abu-Akeel | Roberta Zappasodi | nadeem Riaz | Martin Smoragiewicz | Z. Larkin Kelley | olca Basturk | Douglas t. Fearon | timothy A. Chan | taha Merghoub | M. Smoragiewicz | A. Goodwin | M. Brooke-Smith | Jennifer Q. Zhang | Benjamin D Medina | Jennifer K. Loo | V. James | K. Feeney | K. Slater | Z. Kelley | John Chen | D. Froio | B. Herbst | J. A. Moral | J. Arena | Peter Hodgkinson | M. Hatzifotis | M. Arshi | H. High | V. Papangelis | K. Ismail | Amitabha Das | Oliver Hofmann | Ashleigh Morgan | M. Beilin | Joseph A Saglimbeni | M. Ballal | A. Drury | David B. Williams | Vincent W. Lam | C. Forest | Sanjay Mukhedkar | Nan Q. Nguyen | C. Worthley | T. J. O'Rourke | Julia N. Zhao | C. Cary | Andreia V. Pinho | John V. Pearson | J. Pearson | D. McLeod | D. Chang | David R. Fletcher | Peter Bailey | Amber L. R. Scott Anthony J. David K. Skye H. Lorraine A Johns Mead Gill Chang McKay Chantrill Chin | David Hermann | R. S. K. L. Mead Tucker Andrews | Anthony J. Jaswinder S. Jennifer Nick Hilda A. Anubhav Gill Samra Arena Pavlakis High Mittal | David K. Andrew V. Peter Sancha Elizabeth A. Marc D. Cra Chang Biankin Bailey Martin Musgrove Jones | Angela Lorraine A. Alina David Allan Chou Chantrill Stoita Williams Spigelman | Nicola John V. Ann-Marie Katia Felicity Pamela Venkateswa Waddell Pearson Patch Nones Newell Mukhopa | Christina Xu | Sean M. Oliver Grimmond Hofmann | Peter J. Angelika Tim Wilson Christ Bruxner | Ray Neil D. Darren Amitabha Asghari Merrett Pavey Das | Annabel Peter H. Kasim Chelsie Goodwin Cosman Ismail O’Connor | Chelsie O'Connor | Caroline L. Annabel Peter James G. Charbel Cooper Goodwin Grimison Kench Sandroussi | James G Kench | Vincent W. Duncan Adnan M. Judy Virginia Lam McLeod Nagrial Kirk James | Michael Cindy Krishna P. Mo David R. Sanjay Texler Forest Epari Ballal Fletcher Mukhedkar | Nikolajs Maria Kynan Zeps Beilin Feeney | Nan Q. Andrew R. Chris Nguyen Ruszkiewicz Worthley | John Mark E. Virginia Chen Brooke-Smith Papangelis | Andrew D. Patrick Clouston Martin | Patrick Martin | Andrew P. Thomas J. Jonathan W. Kellee Michael Peter Barbour O’Rourke Fawcett Slater Hatzifotis Hodg | James R. Ralph H. Christopher L. Mary Eshleman Hruban Wolfgang Hodgin | Aldo Rita T. Stefania Vincenzo Maria Claudio Scarpa Lawlor Beghelli Corbo Scardoni Bassi | T. Chan | Kellee Slater | John V Pearson

[1]  Z. Trajanoski,et al.  Spatiotemporal dynamics of intratumoral immune cells reveal the immune landscape in human cancer. , 2013, Immunity.

[2]  J. Gartner,et al.  Prospective identification of neoantigen-specific lymphocytes in the peripheral blood of melanoma patients , 2016, Nature Medicine.

[3]  Y. Kanai,et al.  Intratumoral tertiary lymphoid organ is a favourable prognosticator in patients with pancreatic cancer , 2015, British Journal of Cancer.

[4]  P. Singh,et al.  MUC16-mediated activation of mTOR and c-MYC reprograms pancreatic cancer metabolism , 2015, Oncotarget.

[5]  C. Iacobuzio-Donahue,et al.  Immortalizing the complexity of cancer metastasis: Genetic features of lethal metastatic pancreatic cancer obtained from rapid autopsy , 2005, Cancer biology & therapy.

[6]  L. Zitvogel,et al.  Microbiome and Anticancer Immunosurveillance , 2016, Cell.

[7]  A. Iasonos,et al.  Novel Monoclonal Antibodies Against the Proximal (Carboxy-Terminal) Portions of MUC16 , 2010, Applied immunohistochemistry & molecular morphology : AIMM.

[8]  M. Hattori,et al.  Two FOXP3+CD4+ T cell subpopulations distinctly control the prognosis of colorectal cancers , 2016, Nature Medicine.

[9]  Judy M. Anderson,et al.  Pathobiological Implications of MUC16 Expression in Pancreatic Cancer , 2011, PloS one.

[10]  D. Levine,et al.  Successful Eradication of Established Peritoneal Ovarian Tumors in SCID-Beige Mice following Adoptive Transfer of T Cells Genetically Targeted to the MUC16 Antigen , 2010, Clinical Cancer Research.

[11]  T. Schumacher,et al.  Dissection of T-cell antigen specificity in human melanoma. , 2012, Cancer research.

[12]  Michael A. Choti,et al.  Whole-exome sequencing of pancreatic cancer defines genetic diversity and therapeutic targets , 2015, Nature Communications.

[13]  M. Lässig,et al.  A predictive fitness model for influenza , 2014, Nature.

[14]  G. Litjens,et al.  In-depth tissue profiling using multiplexed immunohistochemical consecutive staining on single slide , 2016, Science Immunology.

[15]  Shankar Vembu,et al.  PhyloWGS: Reconstructing subclonal composition and evolution from whole-genome sequencing of tumors , 2015, Genome Biology.

[16]  Yuval Elhanati,et al.  Quantifying selection in immune receptor repertoires , 2014, Proceedings of the National Academy of Sciences.

[17]  R. Emerson,et al.  PD-1 blockade induces responses by inhibiting adaptive immune resistance , 2014, Nature.

[18]  L. Gross Intradermal Immunization of C3H Mice against a Sarcoma That Originated in an Animal of the Same Line , 1943 .

[19]  F. Cunningham,et al.  The Ensembl Variant Effect Predictor , 2016, Genome Biology.

[20]  R. Gibbs,et al.  Genomic analyses identify molecular subtypes of pancreatic cancer , 2016, Nature.

[21]  Lynette M. Smith,et al.  MUC16 contributes to the metastasis of pancreatic ductal adenocarcinoma through focal adhesion mediated signaling mechanism , 2016, Genes & cancer.

[22]  Martin L. Miller,et al.  Mutational landscape determines sensitivity to PD-1 blockade in non–small cell lung cancer , 2015, Science.

[23]  T. Schumacher,et al.  Neoantigen landscape dynamics during human melanoma–T cell interactions , 2016, Nature.

[24]  Pamela E. Constantinou,et al.  Tumor necrosis factor-α and interferon-γ stimulate MUC16 (CA125) expression in breast, endometrial and ovarian cancers through NFκB , 2016, Oncotarget.

[25]  E. Mardis,et al.  pVAC-Seq: A genome-guided in silico approach to identifying tumor neoantigens , 2016, Genome Medicine.

[26]  Y. Kanai,et al.  Immune cell infiltration as an indicator of the immune microenvironment of pancreatic cancer , 2013, British Journal of Cancer.

[27]  Lynette M. Smith,et al.  Carboxyl-terminal domain of MUC16 imparts tumorigenic and metastatic functions through nuclear translocation of JAK2 to pancreatic cancer cells , 2015, Oncotarget.