Wide-Area InSAR Survey of Surface Deformation in Urban Areas and Geothermal Fields in the Eastern Trans-Mexican Volcanic Belt, Mexico

[1]  Penélope López-Quiroz,et al.  On the potential of time series InSAR for subsidence and ground rupture evaluation: application to Texcoco and Cuautitlan–Pachuca subbasins, northern Valley of Mexico , 2015, Natural Hazards.

[2]  Matteo Albano,et al.  Land subsidence, Ground Fissures and Buried Faults: InSAR Monitoring of Ciudad Guzmán (Jalisco, Mexico) , 2015, Remote. Sens..

[3]  Magaly del Carmen Flores Armenta,et al.  Evolución del sistema geotérmico de Acoculco, Pue., México: un estudio con base en estudios petrográficos del pozo EAC - 2 y en otras consideraciones , 2011 .

[4]  M. T. Orozco-Esquivel,et al.  Wastewater Reuse in Valsequillo Agricultural Area, Mexico: Environmental Impact on Groundwater , 2004 .

[5]  Claudio De Luca,et al.  The Use of Massive Deformation Datasets for the Analysis of Spatial and Temporal Evolution of Mauna Loa Volcano (Hawai'i) , 2018, Remote. Sens..

[6]  Batuhan Osmanoglu,et al.  Monitoring land subsidence and its induced geological hazard with Synthetic Aperture Radar Interferometry: A case study in Morelia, Mexico , 2012 .

[7]  E. Chaussard,et al.  Land subsidence in central Mexico detected by ALOS InSAR time-series , 2014 .

[8]  R. M. Prol-Ledesma,et al.  Thermal history of the Acoculco geothermal system, eastern Mexico: Insights from numerical modeling and radiocarbon dating , 2015 .

[9]  J. L. Macías,et al.  The Acoculco Caldera Complex magmas: Genesis, evolution and relation with the Acoculco geothermal system , 2018, Journal of Volcanology and Geothermal Research.

[10]  Michele Manunta,et al.  An On-Demand Web Tool for the Unsupervised Retrieval of Earth's Surface Deformation from SAR Data: The P-SBAS Service within the ESA G-POD Environment , 2015, Remote. Sens..

[11]  F. Casu,et al.  Large areas surface deformation analysis through a cloud computing P-SBAS approach for massive processing of DInSAR time series , 2017 .

[12]  Francesca Cigna,et al.  Satellite geodesy tools for ground subsidence and associated shallow faulting hazard assessment in central Mexico , 2015 .

[13]  J. L. Macías,et al.  NW-SE Pliocene-Quaternary extension in the Apan-Acoculco region, eastern Trans-Mexican Volcanic Belt , 2018 .

[14]  David A. Seal,et al.  The Shuttle Radar Topography Mission , 2007 .

[15]  G. Mahood Eruption Rates and Compositional Trends at Los Humeros Volcanic Center , 1984 .

[16]  J. Lermo,et al.  Estudio sismológico del campo geotérmico de Los Humeros, Puebla, México. Parte I: Sismicidad, mecanismos de fuente y distribución de esfuerzos , 2008 .

[17]  Wolfgang Niemeier,et al.  Long Term Subsidence Analysis and Soil Fracturing Zonation Based on InSAR Time Series Modelling in Northern Zona Metropolitana del Valle de Mexico , 2015, Remote. Sens..

[18]  Francesco Zucca,et al.  Structural analysis and thermal remote sensing of the Los Humeros Volcanic Complex: Implications for volcano structure and geothermal exploration , 2015 .

[19]  V. Garduño-Monroy,et al.  Geomorphology of Las Derrumbadas dome complex, Puebla Mexico , 2019, Journal of Maps.

[20]  Stuart H. Marsh,et al.  Mexico City land subsidence in 2014-2015 with Sentinel-1 IW TOPS: Results using the Intermittent SBAS (ISBAS) technique , 2016, Int. J. Appl. Earth Obs. Geoinformation.

[21]  G. Pavlic,et al.  Groundwater depletion in Central Mexico: Use of GRACE and InSAR to support water resources management , 2016 .

[22]  Alfonso Rivera,et al.  Land subsidence in major cities of Central Mexico: Interpreting InSAR-derived land subsidence mapping with hydrogeological data , 2016, Int. J. Appl. Earth Obs. Geoinformation.

[23]  F. Cigna,et al.  Detecting subsidence-induced faulting in Mexican urban areas by means of Persistent Scatterer Interferometry and subsidence horizontal gradient mapping , 2011, 2011 IEEE International Geoscience and Remote Sensing Symposium.

[24]  Yan Jiang,et al.  City subsidence observed with persistent scatterer InSAR , 2010 .

[25]  Howard A. Zebker,et al.  Decorrelation in interferometric radar echoes , 1992, IEEE Trans. Geosci. Remote. Sens..

[26]  E. González-Partida,et al.  Hydrothermal activity in the Tulancingo-Acoculco Caldera Complex, central Mexico: Exploratory studies , 2009 .

[27]  Virginie Pinel,et al.  The challenging retrieval of the displacement field from InSAR data for andesitic stratovolcanoes: Case study of Popocatepetl and Colima Volcano, Mexico , 2011 .

[28]  R. Goldstein,et al.  Mapping small elevation changes over large areas: Differential radar interferometry , 1989 .

[29]  V. Garduño-Monroy,et al.  The shallow structure of Los Humeros and Las Derrumbadas geothermal fields, Mexico , 1987 .

[30]  Francesca Cigna,et al.  The relationship between intermittent coherence and precision of ISBAS InSAR ground motion velocities: ERS-1/2 case studies in the UK , 2017 .

[31]  Timothy H. Dixon,et al.  Space geodetic imaging of rapid ground subsidence in Mexico City , 2008 .

[32]  Robert J. Mellors,et al.  Land subsidence in the Cerro Prieto Geothermal Field, Baja California, Mexico, from 1994 to 2005 , 2011 .

[33]  Gianfranco Fornaro,et al.  A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms , 2002, IEEE Trans. Geosci. Remote. Sens..

[34]  Fabio Rocca,et al.  Permanent scatterers in SAR interferometry , 2001, IEEE Trans. Geosci. Remote. Sens..

[35]  R. Aravena,et al.  Hydrochemistry and origins of mineralized waters in the Puebla aquifer system, Mexico , 2010 .

[36]  G. Carrasco‐Núñez,et al.  Evolution of tuff ring-dome complex: the case study of Cerro Pinto, eastern Trans-Mexican Volcanic Belt , 2010 .

[37]  Michele Manunta,et al.  A Cloud Computing Solution for the Efficient Implementation of the P-SBAS DInSAR Approach , 2017, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[38]  P. Fokker,et al.  Production-Induced Subsidence at the Los Humeros Geothermal Field Inferred from PS-InSAR , 2019, Geofluids.

[39]  Michele Manunta,et al.  SBAS-DInSAR Parallel Processing for Deformation Time-Series Computation , 2014, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[40]  Francesca Cigna Getting ready for the generation of a nationwide ground motion product for great Britain using SAR data stacks: Feasibility, data volumes and perspectives , 2015, 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[41]  Hubert Fabriol,et al.  Monitoring and modeling land subsidence at the Cerro Prieto Geothermal Field, Baja California, Mexico, using SAR interferometry , 1999 .

[42]  G. Norini,et al.  Geologic Map of Los Humeros volcanic complex and geothermal field, eastern Trans-Mexican Volcanic Belt , 2017 .

[43]  Francesca Cigna,et al.  Characterisation of hydraulic head changes and aquifer properties in the London Basin using Persistent Scatterer Interferometry ground motion data , 2016 .

[44]  Thomas Fuhrmann,et al.  Resolving Three-Dimensional Surface Motion with InSAR: Constraints from Multi-Geometry Data Fusion , 2019, Remote. Sens..

[45]  G. Carrasco‐Núñez,et al.  Subsurface stratigraphy and its correlation with the surficial geology at Los Humeros geothermal field, eastern Trans-Mexican Volcanic Belt , 2017 .

[46]  Matteo Albano,et al.  An innovative procedure for monitoring the change in soil seismic response by InSAR data: application to the Mexico City subsidence , 2016, Int. J. Appl. Earth Obs. Geoinformation.

[47]  René E. Chávez,et al.  Study of geothermal water intrusion due to groundwater exploitation in the Puebla Valley aquifer system, Mexico , 2006 .

[48]  S. Samsonov,et al.  Subsidence at Cerro Prieto Geothermal Field and postseismic slip along the Indiviso fault from 2011 to 2016 RADARSAT‐2 DInSAR time series analysis , 2017 .

[49]  K. Feigl,et al.  Radar interferometry and its application to changes in the Earth's surface , 1998 .

[50]  Xiaohua Xu,et al.  Tectonic and Anthropogenic Deformation at the Cerro Prieto Geothermal Step-Over Revealed by Sentinel-1A InSAR , 2017, IEEE Transactions on Geoscience and Remote Sensing.

[51]  M. Ramírez,et al.  The structural architecture of the Los Humeros volcanic complex and geothermal field , 2014, Journal of Volcanology and Geothermal Research.

[52]  J. Martí,et al.  Geology of the late Pliocene – Pleistocene Acoculco caldera complex, eastern Trans-Mexican Volcanic Belt (México) , 2018, Journal of Maps.

[53]  Michele Manunta,et al.  Taking Advantage of the ESA G-POD Service to Study Ground Deformation Processes in High Mountain Areas: A Valle d'Aosta Case Study, Northern Italy , 2016, Remote. Sens..

[54]  G. Carrasco‐Núñez,et al.  Evolution of a complex isolated dome system, Cerro Pizarro, central México , 2004 .

[55]  Harald van der Werff,et al.  Geologic remote sensing for geothermal exploration: A review , 2014, Int. J. Appl. Earth Obs. Geoinformation.