Wide-Area InSAR Survey of Surface Deformation in Urban Areas and Geothermal Fields in the Eastern Trans-Mexican Volcanic Belt, Mexico
暂无分享,去创建一个
Deodato Tapete | Francesca Cigna | Víctor Hugo Garduño-Monroy | Jesús Arturo Muñiz-Jauregui | Oscar Humberto García-Hernández | Adrián Jiménez-Haro | D. Tapete | F. Cigna | V. Garduño-Monroy | J. A. Muñiz-Jauregui | A. Jiménez-Haro
[1] Penélope López-Quiroz,et al. On the potential of time series InSAR for subsidence and ground rupture evaluation: application to Texcoco and Cuautitlan–Pachuca subbasins, northern Valley of Mexico , 2015, Natural Hazards.
[2] Matteo Albano,et al. Land subsidence, Ground Fissures and Buried Faults: InSAR Monitoring of Ciudad Guzmán (Jalisco, Mexico) , 2015, Remote. Sens..
[3] Magaly del Carmen Flores Armenta,et al. Evolución del sistema geotérmico de Acoculco, Pue., México: un estudio con base en estudios petrográficos del pozo EAC - 2 y en otras consideraciones , 2011 .
[4] M. T. Orozco-Esquivel,et al. Wastewater Reuse in Valsequillo Agricultural Area, Mexico: Environmental Impact on Groundwater , 2004 .
[5] Claudio De Luca,et al. The Use of Massive Deformation Datasets for the Analysis of Spatial and Temporal Evolution of Mauna Loa Volcano (Hawai'i) , 2018, Remote. Sens..
[6] Batuhan Osmanoglu,et al. Monitoring land subsidence and its induced geological hazard with Synthetic Aperture Radar Interferometry: A case study in Morelia, Mexico , 2012 .
[7] E. Chaussard,et al. Land subsidence in central Mexico detected by ALOS InSAR time-series , 2014 .
[8] R. M. Prol-Ledesma,et al. Thermal history of the Acoculco geothermal system, eastern Mexico: Insights from numerical modeling and radiocarbon dating , 2015 .
[9] J. L. Macías,et al. The Acoculco Caldera Complex magmas: Genesis, evolution and relation with the Acoculco geothermal system , 2018, Journal of Volcanology and Geothermal Research.
[10] Michele Manunta,et al. An On-Demand Web Tool for the Unsupervised Retrieval of Earth's Surface Deformation from SAR Data: The P-SBAS Service within the ESA G-POD Environment , 2015, Remote. Sens..
[11] F. Casu,et al. Large areas surface deformation analysis through a cloud computing P-SBAS approach for massive processing of DInSAR time series , 2017 .
[12] Francesca Cigna,et al. Satellite geodesy tools for ground subsidence and associated shallow faulting hazard assessment in central Mexico , 2015 .
[13] J. L. Macías,et al. NW-SE Pliocene-Quaternary extension in the Apan-Acoculco region, eastern Trans-Mexican Volcanic Belt , 2018 .
[14] David A. Seal,et al. The Shuttle Radar Topography Mission , 2007 .
[15] G. Mahood. Eruption Rates and Compositional Trends at Los Humeros Volcanic Center , 1984 .
[16] J. Lermo,et al. Estudio sismológico del campo geotérmico de Los Humeros, Puebla, México. Parte I: Sismicidad, mecanismos de fuente y distribución de esfuerzos , 2008 .
[17] Wolfgang Niemeier,et al. Long Term Subsidence Analysis and Soil Fracturing Zonation Based on InSAR Time Series Modelling in Northern Zona Metropolitana del Valle de Mexico , 2015, Remote. Sens..
[18] Francesco Zucca,et al. Structural analysis and thermal remote sensing of the Los Humeros Volcanic Complex: Implications for volcano structure and geothermal exploration , 2015 .
[19] V. Garduño-Monroy,et al. Geomorphology of Las Derrumbadas dome complex, Puebla Mexico , 2019, Journal of Maps.
[20] Stuart H. Marsh,et al. Mexico City land subsidence in 2014-2015 with Sentinel-1 IW TOPS: Results using the Intermittent SBAS (ISBAS) technique , 2016, Int. J. Appl. Earth Obs. Geoinformation.
[21] G. Pavlic,et al. Groundwater depletion in Central Mexico: Use of GRACE and InSAR to support water resources management , 2016 .
[22] Alfonso Rivera,et al. Land subsidence in major cities of Central Mexico: Interpreting InSAR-derived land subsidence mapping with hydrogeological data , 2016, Int. J. Appl. Earth Obs. Geoinformation.
[23] F. Cigna,et al. Detecting subsidence-induced faulting in Mexican urban areas by means of Persistent Scatterer Interferometry and subsidence horizontal gradient mapping , 2011, 2011 IEEE International Geoscience and Remote Sensing Symposium.
[24] Yan Jiang,et al. City subsidence observed with persistent scatterer InSAR , 2010 .
[25] Howard A. Zebker,et al. Decorrelation in interferometric radar echoes , 1992, IEEE Trans. Geosci. Remote. Sens..
[26] E. González-Partida,et al. Hydrothermal activity in the Tulancingo-Acoculco Caldera Complex, central Mexico: Exploratory studies , 2009 .
[27] Virginie Pinel,et al. The challenging retrieval of the displacement field from InSAR data for andesitic stratovolcanoes: Case study of Popocatepetl and Colima Volcano, Mexico , 2011 .
[28] R. Goldstein,et al. Mapping small elevation changes over large areas: Differential radar interferometry , 1989 .
[29] V. Garduño-Monroy,et al. The shallow structure of Los Humeros and Las Derrumbadas geothermal fields, Mexico , 1987 .
[30] Francesca Cigna,et al. The relationship between intermittent coherence and precision of ISBAS InSAR ground motion velocities: ERS-1/2 case studies in the UK , 2017 .
[31] Timothy H. Dixon,et al. Space geodetic imaging of rapid ground subsidence in Mexico City , 2008 .
[32] Robert J. Mellors,et al. Land subsidence in the Cerro Prieto Geothermal Field, Baja California, Mexico, from 1994 to 2005 , 2011 .
[33] Gianfranco Fornaro,et al. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms , 2002, IEEE Trans. Geosci. Remote. Sens..
[34] Fabio Rocca,et al. Permanent scatterers in SAR interferometry , 2001, IEEE Trans. Geosci. Remote. Sens..
[35] R. Aravena,et al. Hydrochemistry and origins of mineralized waters in the Puebla aquifer system, Mexico , 2010 .
[36] G. Carrasco‐Núñez,et al. Evolution of tuff ring-dome complex: the case study of Cerro Pinto, eastern Trans-Mexican Volcanic Belt , 2010 .
[37] Michele Manunta,et al. A Cloud Computing Solution for the Efficient Implementation of the P-SBAS DInSAR Approach , 2017, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.
[38] P. Fokker,et al. Production-Induced Subsidence at the Los Humeros Geothermal Field Inferred from PS-InSAR , 2019, Geofluids.
[39] Michele Manunta,et al. SBAS-DInSAR Parallel Processing for Deformation Time-Series Computation , 2014, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.
[40] Francesca Cigna. Getting ready for the generation of a nationwide ground motion product for great Britain using SAR data stacks: Feasibility, data volumes and perspectives , 2015, 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).
[41] Hubert Fabriol,et al. Monitoring and modeling land subsidence at the Cerro Prieto Geothermal Field, Baja California, Mexico, using SAR interferometry , 1999 .
[42] G. Norini,et al. Geologic Map of Los Humeros volcanic complex and geothermal field, eastern Trans-Mexican Volcanic Belt , 2017 .
[43] Francesca Cigna,et al. Characterisation of hydraulic head changes and aquifer properties in the London Basin using Persistent Scatterer Interferometry ground motion data , 2016 .
[44] Thomas Fuhrmann,et al. Resolving Three-Dimensional Surface Motion with InSAR: Constraints from Multi-Geometry Data Fusion , 2019, Remote. Sens..
[45] G. Carrasco‐Núñez,et al. Subsurface stratigraphy and its correlation with the surficial geology at Los Humeros geothermal field, eastern Trans-Mexican Volcanic Belt , 2017 .
[46] Matteo Albano,et al. An innovative procedure for monitoring the change in soil seismic response by InSAR data: application to the Mexico City subsidence , 2016, Int. J. Appl. Earth Obs. Geoinformation.
[47] René E. Chávez,et al. Study of geothermal water intrusion due to groundwater exploitation in the Puebla Valley aquifer system, Mexico , 2006 .
[48] S. Samsonov,et al. Subsidence at Cerro Prieto Geothermal Field and postseismic slip along the Indiviso fault from 2011 to 2016 RADARSAT‐2 DInSAR time series analysis , 2017 .
[49] K. Feigl,et al. Radar interferometry and its application to changes in the Earth's surface , 1998 .
[50] Xiaohua Xu,et al. Tectonic and Anthropogenic Deformation at the Cerro Prieto Geothermal Step-Over Revealed by Sentinel-1A InSAR , 2017, IEEE Transactions on Geoscience and Remote Sensing.
[51] M. Ramírez,et al. The structural architecture of the Los Humeros volcanic complex and geothermal field , 2014, Journal of Volcanology and Geothermal Research.
[52] J. Martí,et al. Geology of the late Pliocene – Pleistocene Acoculco caldera complex, eastern Trans-Mexican Volcanic Belt (México) , 2018, Journal of Maps.
[53] Michele Manunta,et al. Taking Advantage of the ESA G-POD Service to Study Ground Deformation Processes in High Mountain Areas: A Valle d'Aosta Case Study, Northern Italy , 2016, Remote. Sens..
[54] G. Carrasco‐Núñez,et al. Evolution of a complex isolated dome system, Cerro Pizarro, central México , 2004 .
[55] Harald van der Werff,et al. Geologic remote sensing for geothermal exploration: A review , 2014, Int. J. Appl. Earth Obs. Geoinformation.