Efficient subspace clustering of hyperspectral images using similarity-constrained sampling

Abstract. The unsupervised classification of hyperspectral images (HSIs) draws attention in the remote sensing community due to its inherent complexity and the lack of labeled data. Among unsupervised methods, sparse subspace clustering (SSC) achieves high clustering accuracy by constructing a sparse affinity matrix. However, SSC has limitations when clustering HSI images due to the number of spectral pixels. Specifically, the temporal complexity grows at a cubic ratio of the size of the data, making it inefficient for addressing HSI subspace clustering. We propose an efficient SSC-based method that significantly reduces the temporal and spatial computational complexity by splitting the HSI clustering task using similarity-constrained sampling. Our similarity-constrained sampling strategy considers both edge and superpixel information of the HSI to boost the clustering performance. This sampling strategy enables an intelligent selection of spectral signatures, and then, we split the clustering problem into multiples threads. Experimental results on widely used HSI datasets show that the efficiency of the proposed method outperforms baseline methods by up to 30% in overall accuracy and up to six times in computing time.

[1]  Ulrike von Luxburg,et al.  A tutorial on spectral clustering , 2007, Stat. Comput..

[2]  Daniel P. Robinson,et al.  Oracle Based Active Set Algorithm for Scalable Elastic Net Subspace Clustering , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[3]  Yuan Yan Tang,et al.  Spectral–Spatial Graph Convolutional Networks for Semisupervised Hyperspectral Image Classification , 2019, IEEE Geoscience and Remote Sensing Letters.

[4]  Johannes R. Sveinsson,et al.  Hyperspectral Subspace Identification Using SURE , 2015, IEEE Geoscience and Remote Sensing Letters.

[5]  Vincent Barra,et al.  Fused 3-D spectral-spatial deep neural networks and spectral clustering for hyperspectral image classification , 2020, Pattern Recognit. Lett..

[6]  Bo Wahlberg,et al.  An ADMM algorithm for solving ℓ1 regularized MPC , 2012, 2012 IEEE 51st IEEE Conference on Decision and Control (CDC).

[7]  Heikki Mannila,et al.  Random projection in dimensionality reduction: applications to image and text data , 2001, KDD '01.

[8]  Nasser M. Nasrabadi,et al.  Automated Hyperspectral Cueing for Civilian Search and Rescue , 2009, Proceedings of the IEEE.

[9]  Heng Tao Shen,et al.  Principal Component Analysis , 2009, Encyclopedia of Biometrics.

[10]  Zhang Yi,et al.  A Unified Framework for Representation-Based Subspace Clustering of Out-of-Sample and Large-Scale Data , 2013, IEEE Transactions on Neural Networks and Learning Systems.

[11]  F. Lehmann,et al.  HyMap hyperspectral remote sensing to detect hydrocarbons , 2001 .

[12]  René Vidal,et al.  Sparse Subspace Clustering: Algorithm, Theory, and Applications , 2012, IEEE transactions on pattern analysis and machine intelligence.

[13]  Emanuele Trucco,et al.  Introductory techniques for 3-D computer vision , 1998 .

[14]  Hongyan Zhang,et al.  Semisupervised Sparse Subspace Clustering Method With a Joint Sparsity Constraint for Hyperspectral Remote Sensing Images , 2019, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[15]  Daniel P. Robinson,et al.  Scalable Exemplar-based Subspace Clustering on Class-Imbalanced Data , 2018, European Conference on Computer Vision.

[16]  Carlos Hinojosa,et al.  Hyperspectral image segmentation using 3D regularized subspace clustering model , 2021, Journal of Applied Remote Sensing.

[17]  Jorge Bacca,et al.  Spectral Imaging Subspace Clustering with 3-D Spatial Regularizer , 2018 .

[18]  Daniel P. Robinson,et al.  Scalable Sparse Subspace Clustering by Orthogonal Matching Pursuit , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[19]  Henry Arguello,et al.  Supervised spatio-spectral classification of fused images using superpixels. , 2019, Applied optics.

[20]  Henry Arguello,et al.  Multiple snapshot colored compressive spectral imager , 2016 .

[21]  S. Dutta,et al.  Study of crop growth parameters using Airborne Imaging Spectrometer data , 2001 .

[22]  Michael I. Jordan,et al.  On Spectral Clustering: Analysis and an algorithm , 2001, NIPS.

[23]  Allen Y. Yang,et al.  Robust Face Recognition via Sparse Representation , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[24]  Aurobinda Routray,et al.  Noise robust estimation of number of endmembers in a hyperspectral image by Eigenvalue based gap index , 2016, 2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS).

[25]  Pascal Fua,et al.  SLIC Superpixels Compared to State-of-the-Art Superpixel Methods , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[26]  O. R. Vincent,et al.  A Descriptive Algorithm for Sobel Image Edge Detection , 2009 .

[27]  Niharika Gauraha,et al.  Introduction to the LASSO , 2018, Resonance.

[28]  Liangpei Zhang,et al.  Spectral–Spatial Sparse Subspace Clustering for Hyperspectral Remote Sensing Images , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[29]  Liangpei Zhang,et al.  Kernel Sparse Subspace Clustering with a Spatial Max Pooling Operation for Hyperspectral Remote Sensing Data Interpretation , 2017, Remote. Sens..

[30]  Richard I. Hartley,et al.  Graph connectivity in sparse subspace clustering , 2011, CVPR 2011.

[31]  Ehsan Elhamifar,et al.  Sparse subspace clustering , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[32]  Zhengqin Li,et al.  Superpixel segmentation using Linear Spectral Clustering , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[33]  Antonio J. Plaza,et al.  A New Sparse Subspace Clustering Algorithm for Hyperspectral Remote Sensing Imagery , 2017, IEEE Geoscience and Remote Sensing Letters.

[34]  Mohammad Rahmati,et al.  Scalable and Robust Sparse Subspace Clustering Using Randomized Clustering and Multilayer Graphs , 2018, Signal Process..

[35]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[36]  Muhammad Ahmad,et al.  A Fast and Compact 3-D CNN for Hyperspectral Image Classification , 2020, IEEE Geoscience and Remote Sensing Letters.