The X-Ray-derived Cosmological Star Formation History and the Galaxy X-Ray Luminosity Functions in the Chandra Deep Fields North and South

The cosmological star formation rate in the combined Chandra Deep Fields North and South is derived from our X-ray luminosity function for galaxies in these deep fields. Mild evolution is seen up to redshift order unity with star formation rate ~ (1 + z)2.7. This is the first directly observed normal star-forming galaxy X-ray luminosity function (XLF) at cosmologically interesting redshifts (z > 0). This provides the most direct measure yet of the X-ray-derived cosmic star formation history of the universe. We make use of Bayesian statistical methods to classify the galaxies and the two types of active galactic nuclei (AGNs), finding the most useful discriminators to be the X-ray luminosity, X-ray hardness ratio, and X-ray to optical flux ratio. There is some residual AGN contamination in the sample at the bright end of the luminosity function. Incompleteness slightly flattens the XLF at the faint end of the luminosity function. The XLF has a lognormal distribution and agrees well with the radio and infrared luminosity functions. However, the XLF does not agree with the Schechter luminosity function for the Hα LF, indicating that, as discussed in the text, additional and different physical processes may be involved in the establishment of the lognormal form of the XLF. The agreement of our star formation history points with the other star formation determinations in different wavebands (IR, radio, Hα) gives an interesting constraint on the initial mass function (IMF). The X-ray emission in the Chandra band is most likely due to binary stars, although X-ray emission from nonstellar sources (e.g., intermediate-mass black holes and/or low-luminosity AGNs) remains a possibility. Under the assumption that it is due to binary stars, the overall consistency and correlations between single-star effects and binary-star effects indicate that not only is the one-parameter IMF (M) constant but also the bivariate IMF(M1, M2) must be constant, at least at the high-mass end. Another way to put this, quite simply, is that X-ray observations may be measuring directly the binary-star formation history of the universe. X-ray studies will continue to be useful for probing the star formation history of the universe by avoiding problems of obscuration. Star formation may therefore be measured in more detail by deep surveys with future X-ray missions.

[1]  M. Eracleous,et al.  Simulations of the evolution of the X-Ray properties of a young stellar population , 2004, Proceedings of the International Astronomical Union.

[2]  T. M. Heckman,et al.  A High Spatial Resolution X-Ray and Hα Study of Hot Gas in the Halos of Star-forming Disk Galaxies. II. Quantifying Supernova Feedback , 2003, astro-ph/0306598.

[3]  Edward Colbert,et al.  Old and Young X-Ray Point Source Populations in Nearby Galaxies , 2003, astro-ph/0305476.

[4]  G. Hughes,et al.  To William Hogg 8 October 1811 , 2004 .

[5]  J. Cohen Star Formation and X-Ray Emission in Distant Star-Forming Galaxies , 2003, astro-ph/0307537.

[6]  R. Nichol,et al.  Star Formation Rate Indicators in the Sloan Digital Sky Survey , 2003, astro-ph/0306621.

[7]  D. M. Alexander,et al.  Optical and Infrared Properties of the 2 Ms Chandra Deep Field North X-Ray Sources , 2003, astro-ph/0306212.

[8]  A. Georgakakis,et al.  The XMM–Newton/2dF survey – I. X‐ray properties of normal galaxies , 2003, astro-ph/0305278.

[9]  D. M. Alexander,et al.  The Chandra Deep Field North Survey. XV. Optically Bright, X-Ray-Faint Sources , 2003, astro-ph/0305086.

[10]  D. M. Alexander,et al.  The Chandra Deep Field North Survey. XIII. 2 Ms Point-Source Catalogs , 2003, astro-ph/0304392.

[11]  T. Takeuchi,et al.  The Luminosity Function of IRAS Point Source Catalog Redshift Survey Galaxies , 2003 .

[12]  M. Ward,et al.  X-Ray-Luminous Galaxies. I. Chandra Observations of IRAS 00317–2142 , 2002, astro-ph/0210390.

[13]  M. McCollough,et al.  Chandra X-Ray Observations of the Spiral Galaxy M81 , 2002, astro-ph/0206160.

[14]  M. Hobson,et al.  A Bayesian approach to discrete object detection in astronomical data sets , 2002, astro-ph/0204457.

[15]  A. Comastri,et al.  The 2-10 keV luminosity as a Star Formation Rate indicator , 2002, astro-ph/0202241.

[16]  V. Trimble IAU Symposium 214: High‐Energy Processes and Phenomena in Astrophysics , 2003 .

[17]  Giuseppina Fabbiano,et al.  Chandra Observations of “The Antennae” Galaxies (NGC 4038/4039). IV. The X-Ray Source Luminosity Function and the Nature of Ultraluminous X-Ray Sources , 2002 .

[18]  R. Chornock,et al.  “Hidden” Seyfert 2 Galaxies and the X-Ray Background , 2002, astro-ph/0210047.

[19]  L. Kewley,et al.  The Hα and Infrared Star Formation Rates for the Nearby Field Galaxy Survey , 2002, astro-ph/0208508.

[20]  W. Cotton,et al.  Radio Sources and Star Formation in the Local Universe , 2002 .

[21]  W. Brandt,et al.  The Chandra Deep Field North Survey. XII. The Link between Faint X-Ray and Radio Source Populations , 2002, astro-ph/0207433.

[22]  T. Heckman,et al.  Recent progress in understanding the hot and warm gas phases in the halos of star-forming galaxies , 2002, astro-ph/0207177.

[23]  W. Brandt,et al.  Submitted to the Astronomical Journal , 2002 .

[24]  Marat Gilfanov,et al.  High mass x-ray binaries as a star formation rate indicator in distant galaxies , 2002 .

[25]  O. Lahav,et al.  Combining cosmological data sets: hyperparameters and Bayesian evidence , 2002, astro-ph/0203259.

[26]  P. Kaaret,et al.  A Minisurvey of X-Ray Point Sources in Starburst and Nonstarburst Galaxies , 2002, astro-ph/0203190.

[27]  D. Burke,et al.  STAR FORMATION HISTORY SINCE z = 1.5 AS INFERRED FROM REST-FRAME ULTRAVIOLET LUMINOSITY DENSITY EVOLUTION , 2002, astro-ph/0203168.

[28]  L. Ho,et al.  X-Ray Properties of LINERs and Low-Luminosity Seyfert Galaxies Observed with ASCA. I. Observations and Results , 2002, astro-ph/0203005.

[29]  D. M. Alexander,et al.  The Chandra Deep Field-North Survey. XI. X-Ray Emission from Luminous Infrared Starburst Galaxies , 2002, astro-ph/0202493.

[30]  M. Persic,et al.  X-ray spectral components of starburst galaxies , 2002 .

[31]  D. Alexander,et al.  The Chandra Deep Field-North Survey. VIII. X-Ray Constraints on Spiral Galaxies from 0.4 < z < 1.5 , 2001, astro-ph/0110094.

[32]  Roberto Gilmozzi,et al.  Chandra Deep Field South: The 1 Ms Catalog , 2002 .

[33]  J. Rhodes,et al.  Emission-Line Galaxies in the STIS Parallel Survey. II. Star Formation Density , 2001, astro-ph/0301004.

[34]  S. Maddox,et al.  The Hα luminosity function and star formation rate up to z ∼ 1 ⋆ , 2001, astro-ph/0111390.

[35]  R. Griffiths,et al.  Faint-Source Counts from Off-Source Fluctuation Analysis on Chandra Observations of the Hubble Deep Field-North , 2001, astro-ph/0111393.

[36]  D. Madgwick,et al.  The 2dF Galaxy Redshift Survey: Constraints on Cosmic Star Formation History from the Cosmic Spectrum , 2001, astro-ph/0110676.

[37]  L. Kewley,et al.  The Chandra Deep Field-South: The 1 Million Second Exposure , 2001, astro-ph/0110452.

[38]  A. Ptak,et al.  The Consequences of the Cosmic Star Formation Rate: X-Ray Number Counts , 2001, astro-ph/0108302.

[39]  Nicholas E. White,et al.  X-Ray Probes of Cosmic Star Formation History , 2001, astro-ph/0108245.

[40]  Cambridge,et al.  A Comparison of Independent Star Formation Diagnostics for an Ultraviolet-selected Sample of Nearby Galaxies , 2001, astro-ph/0104425.

[41]  D. Elbaz,et al.  Interpreting the Cosmic Infrared Background: Constraints on the Evolution of the Dust-enshrouded Star Formation Rate , 2001, astro-ph/0103067.

[42]  C. Norman,et al.  Numerical Models of the Multiphase Interstellar Matter with Stellar Energy Feedback on a Galactic Scale , 2001 .

[43]  T. Miyaji,et al.  Soft X-ray AGN Luminosity Function from ROSAT Surveys II. Table of the binned Soft X-ray Luminosity Function , 2001, astro-ph/0101279.

[44]  R. Ellis,et al.  The 2dF galaxy redshift survey: near-infrared galaxy luminosity functions , 2000, astro-ph/0012429.

[45]  T. Heckman,et al.  The Seyfert-Starburst Connection in X-Rays. II. Results and Implications , 2000, astro-ph/0012036.

[46]  A. Connolly,et al.  Star Formation in Galaxies between Redshifts of 0.7 and 1.8 , 2000 .

[47]  R. Giacconi,et al.  X-Raying the Star Formation History of the Universe , 1999, The Astrophysical journal.

[48]  M. Page,et al.  An improved method of constructing binned luminosity functions , 1999, astro-ph/9909434.

[49]  M. Sullivan,et al.  An ultraviolet-selected galaxy redshift survey -- II. The physical nature of star formation in an enlarged sample , 1999, astro-ph/9910104.

[50]  S. Veilleux,et al.  New Results from a Near-Infrared Search for Hidden Broad-Line Regions in Ultraluminous Infrared Galaxies , 1999, astro-ph/9904148.

[51]  I. Georgantopoulos,et al.  The X-ray luminosity function of local galaxies , 1999, astro-ph/9902037.

[52]  R. Mushotzky,et al.  X-Ray Constraints on Accretion and Starburst Processes in Galactic Nuclei. I. Spectral Results , 1998, astro-ph/9808159.

[53]  E. A. Richards,et al.  Faint Radio Sources and Star Formation History , 1998, astro-ph/9904036.

[54]  Kimberly Ann Weaver,et al.  An X-Ray Minisurvey of Nearby Edge-on Starburst Galaxies. I. The Data , 1998 .

[55]  C. Blake,et al.  Measurement of the star formation rate from Hα in field galaxies at z=1 , 1998, astro-ph/9808276.

[56]  Jr.,et al.  STAR FORMATION IN GALAXIES ALONG THE HUBBLE SEQUENCE , 1998, astro-ph/9807187.

[57]  Paolo Conconi,et al.  WFXT: a wide field X-ray optics , 1998 .

[58]  Kirpal Nandra,et al.  ASCA Observations of Type 2 Seyfert Galaxies. I. Data Analysis Results , 1997 .

[59]  Laurence Tresse,et al.  The Hα Luminosity Function and Star Formation Rate at z ~ 0.2 , 1997, astro-ph/9709240.

[60]  Hans Ulrik Nørgaard-Nielsen,et al.  Observations of the Hubble Deep Field with the Infrared Space Observatory V. Spectral energy distributions starburst models and star formation history , 1997 .

[61]  R. Terlevich,et al.  New diagnostic methods for emission-line galaxies in deep surveys , 1997, astro-ph/9706016.

[62]  A. Fruchter,et al.  HIGH-REDSHIFT GALAXIES IN THE HUBBLE DEEP FIELD : COLOUR SELECTION AND STAR FORMATION HISTORY TO Z 4 , 1996, astro-ph/9607172.

[63]  O. Fèvre,et al.  The Canada-France Redshift Survey: The Luminosity Density and Star Formation History of the Universe to z ~ 1 , 1996, astro-ph/9601050.

[64]  Christopher J. Burrows,et al.  Optimal grazing incidence optics and its application to wide-field X-ray imaging , 1992 .

[65]  D. Burrows,et al.  Determination of Confidence Limits for Experiments with Low Numbers of Counts , 1991 .

[66]  R. Ellis,et al.  The 60-μ and far-infrared luminosity functions of IRAS galaxies , 1990 .

[67]  Giuseppina Fabbiano,et al.  X Rays From Normal Galaxies , 1989 .

[68]  H. Tananbaum,et al.  X-Ray properties of optically selected QSOs , 1986 .

[69]  N. Gehrels Confidence limits for small numbers of events in astrophysical data , 1986 .

[70]  G. Neugebauer,et al.  IRAS observations of Seyfert galaxies , 1985 .

[71]  R. Kennicutt The Rate of star formation in normal disk galaxies , 1983 .

[72]  Maarten Schmidt,et al.  Space Distribution and Luminosity Functions of Quasi-Stellar Radio Sources , 1968 .

[73]  H. Zanstra,et al.  An Application of the Quantum Theory to the Luminosity of Diffuse Nebulae , 1927 .