Model-Free Optimization Using Eagle Perching Optimizer

The paper proposes a novel nature-inspired technique of optimization. It mimics the perching nature of eagles and uses mathematical formulations to introduce a new addition to metaheuristic algorithms. The nature of the proposed algorithm is based on exploration and exploitation. The proposed algorithm is developed into two versions with some modifications. In the first phase, it undergoes a rigorous analysis to find out their performance. In the second phase it is benchmarked using ten functions of two categories; uni-modal functions and multi-modal functions. In the third phase, we conducted a detailed analysis of the algorithm by exploiting its controlling units or variables. In the fourth and last phase, we consider real world optimization problems with constraints. Both versions of the algorithm show an appreciable performance, but analysis puts more weight to the modified version. The competitive analysis shows that the proposed algorithm outperforms the other tested metaheuristic algorithms. The proposed method has better robustness and computational efficiency.

[1]  Arvi Kruusing,et al.  Analysis and optimization of loaded cantilever beam microactuators , 2000 .

[2]  Xin-She Yang,et al.  Cuckoo Search via Lévy flights , 2009, 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC).

[3]  Kwon-Hee Lee,et al.  Robust optimization considering tolerances of design variables , 2001 .

[4]  Xin-She Yang,et al.  Nature-Inspired Metaheuristic Algorithms , 2008 .

[5]  Thomas Stützle,et al.  Ant colony optimization: artificial ants as a computational intelligence technique , 2006 .

[6]  Aboul Ella Hassanien,et al.  A New Multi-layer Perceptrons Trainer Based on Ant Lion Optimization Algorithm , 2015, 2015 Fourth International Conference on Information Science and Industrial Applications (ISI).

[7]  Jaroslaw Sobieszczanski-Sobieski,et al.  Particle swarm optimization , 2002 .

[8]  Lixiang Li,et al.  CHAOTIC PARTICLE SWARM OPTIMIZATION FOR ECONOMIC DISPATCH CONSIDERING THE GENERATOR CONSTRAINTS , 2007 .

[9]  Song-Yul Choe,et al.  Modeling and analysis of a bimorph piezoelectric cantilever beam for voltage generation , 2007 .

[10]  Andries Petrus Engelbrecht,et al.  Particle swarm optimization , 2008, Scholarpedia.

[11]  Seyed Mohammad Mirjalili,et al.  The Ant Lion Optimizer , 2015, Adv. Eng. Softw..

[12]  Seyedali Mirjalili,et al.  Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems , 2015, Neural Computing and Applications.

[13]  Sasikala Jayaraman,et al.  Self-adaptive dragonfly based optimal thresholding for multilevel segmentation of digital images , 2016, J. King Saud Univ. Comput. Inf. Sci..

[14]  T. Bailey,et al.  Distributed Piezoelectric-Polymer Active Vibration Control of a Cantilever Beam , 1985 .

[15]  Srikrishna Subramanian,et al.  Grey wolf optimization for combined heat and power dispatch with cogeneration systems , 2016 .

[16]  Takuya Soma,et al.  Contemporary Falconry in Altai-Kazakh in Western Mongolia , 2012 .

[17]  Amir Hossein Gandomi,et al.  Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems , 2011, Engineering with Computers.

[18]  T. R. Kane,et al.  Dynamics of a cantilever beam attached to a moving base , 1987 .

[19]  M. Ohsaki Genetic algorithm for topology optimization of trusses , 1995 .

[20]  Sandro Ridella,et al.  Minimizing multimodal functions of continuous variables with the “simulated annealing” algorithmCorrigenda for this article is available here , 1987, TOMS.

[21]  Christian Blum,et al.  Hybrid metaheuristics in combinatorial optimization: A survey , 2011, Appl. Soft Comput..

[22]  Siti Zaiton Mohd Hashim,et al.  Training feedforward neural networks using hybrid particle swarm optimization and gravitational search algorithm , 2012, Appl. Math. Comput..

[23]  Bidyadhar Subudhi,et al.  A New MPPT Design Using Grey Wolf Optimization Technique for Photovoltaic System Under Partial Shading Conditions , 2016, IEEE Transactions on Sustainable Energy.

[24]  S. SreeRanjiniK.,et al.  Expert Systems With Applications , 2022 .

[25]  Thomas Stützle,et al.  The Ant Colony Optimization Metaheuristic: Algorithms, Applications, and Advances , 2003 .

[26]  L. Coelho A quantum particle swarm optimizer with chaotic mutation operator , 2008 .

[27]  Dennis J. I. SALVADOR,et al.  Ecology and conservation of Philippine Eagles , 2006 .

[28]  G. Ghodrati Amiri,et al.  GENERALIZED FLEXIBILITY-BASED MODEL UPDATING APPROACH VIA DEMOCRATIC PARTICLE SWARM OPTIMIZATION ALGORITHM FOR STRUCTURAL DAMAGE PROGNOSIS , 2015 .

[29]  Serhat Duman,et al.  Optimal power flow using gravitational search algorithm , 2012 .

[30]  Russell C. Eberhart,et al.  A new optimizer using particle swarm theory , 1995, MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science.

[31]  Jiyu Sun,et al.  Nanomechanical properties of the stigma of dragonfly Anax parthenope julius Brauer , 2007 .

[32]  Ramin Rajabioun,et al.  Cuckoo Optimization Algorithm , 2011, Appl. Soft Comput..

[33]  Aboul Ella Hassanien,et al.  Binary grey wolf optimization approaches for feature selection , 2016, Neurocomputing.

[34]  Bijay Ketan Panigrahi,et al.  Ant lion optimization for short-term wind integrated hydrothermal power generation scheduling , 2016 .

[35]  Thomas Jansen,et al.  On the Optimization of Unimodal Functions with the (1 + 1) Evolutionary Algorithm , 1998, PPSN.

[36]  Dirk Sudholt,et al.  Analysis of different MMAS ACO algorithms on unimodal functions and plateaus , 2009, Swarm Intelligence.

[37]  J. Koski Defectiveness of weighting method in multicriterion optimization of structures , 1985 .

[38]  K S Betts The wrong place to perch. , 2000, Environmental science & technology.

[39]  Pandian Vasant,et al.  Meta-Heuristics Optimization Algorithms in Engineering, Business, Economics, and Finance , 2012 .

[40]  Hossein Nezamabadi-pour,et al.  BGSA: binary gravitational search algorithm , 2010, Natural Computing.

[41]  R. Rao,et al.  Optimal weight design of a gear train using particle swarm optimization and simulated annealing algorithms , 2010 .

[42]  Nibia Berois,et al.  Ecology and Conservation , 2015 .

[43]  Sofiane Berrazouane,et al.  Parameter optimization via cuckoo optimization algorithm of fuzzy controller for energy management of a hybrid power system , 2014 .

[44]  C. Wang,et al.  The small length scale effect for a non-local cantilever beam: a paradox solved , 2008, Nanotechnology.

[45]  Charles Darwin,et al.  On the origin of species, 1859 , 1988 .

[46]  P. Aravindhababu,et al.  Dragonfly Optimization based Reconfiguration for Voltage Profile Enhancement in Distribution Systems , 2017 .

[47]  Michel Gendreau,et al.  Metaheuristics in Combinatorial Optimization , 2022 .

[48]  U. Kirsch,et al.  On singular topologies in optimum structural design , 1990 .

[49]  A. Engelbrecht,et al.  A new locally convergent particle swarm optimiser , 2002, IEEE International Conference on Systems, Man and Cybernetics.

[50]  Thomas Bck,et al.  Self-adaptation in genetic algorithms , 1991 .

[51]  S. Rajeev,et al.  Discrete Optimization of Structures Using Genetic Algorithms , 1992 .

[52]  Panos Y. Papalambros,et al.  Discrete Optimal Design Formulations With Application to Gear Train Design , 1992, DAC 1992.

[53]  Erwie Zahara,et al.  A hybrid genetic algorithm and particle swarm optimization for multimodal functions , 2008, Appl. Soft Comput..

[54]  Bo Liu,et al.  Improved particle swarm optimization combined with chaos , 2005 .

[55]  A. Kaveh,et al.  Chaotic swarming of particles: A new method for size optimization of truss structures , 2014, Adv. Eng. Softw..

[56]  Hossein Nezamabadi-pour,et al.  GSA: A Gravitational Search Algorithm , 2009, Inf. Sci..

[57]  Kevin McGarigal,et al.  The influence of research scale on bald eagle habitat selection along the lower Hudson River, New York (USA) , 2002, Landscape Ecology.

[58]  A. Kaveh,et al.  Democratic PSO for truss layout and size optimization with frequency constraints , 2014 .

[59]  B. Alatas,et al.  Chaos embedded particle swarm optimization algorithms , 2009 .

[60]  Jing J. Liang,et al.  Comprehensive learning particle swarm optimizer for global optimization of multimodal functions , 2006, IEEE Transactions on Evolutionary Computation.

[61]  Thomas Weise,et al.  Global Optimization Algorithms -- Theory and Application , 2009 .

[62]  Xin-She Yang,et al.  A New Metaheuristic Bat-Inspired Algorithm , 2010, NICSO.

[63]  Bela Uhrin,et al.  Some Remarks About the Convolution of Unimodal Functions , 1984 .

[64]  Patrick Siarry,et al.  A Continuous Genetic Algorithm Designed for the Global Optimization of Multimodal Functions , 2000, J. Heuristics.

[65]  M. R. Dale Gear-train design , 1971, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[66]  Robert N. Lehman,et al.  The state of the art in raptor electrocution research: A global review , 2007 .

[67]  Debasish Ghose,et al.  Glowworm swarm optimization for simultaneous capture of multiple local optima of multimodal functions , 2009, Swarm Intelligence.

[68]  E. S. Ali,et al.  Ant Lion Optimization Algorithm for Renewable Distributed Generations , 2016 .

[69]  Wenjun Zhang,et al.  Dissipative particle swarm optimization , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[70]  Christian Blum,et al.  Metaheuristics in combinatorial optimization: Overview and conceptual comparison , 2003, CSUR.

[71]  Yuhui Shi,et al.  Particle swarm optimization: developments, applications and resources , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).