Efficient light emission from hybrid inorganic/organic semiconductor structures by energy level optimization

Innovative hybrid inorganic/organic structures (HIOS) should implement exciton creation by electrical injection in inorganic semiconductors followed by resonant energy transfer and light emission from the organic semiconductor. An inherent obstacle of such designs is the typically unfavorable energy level alignment at HIOS interfaces, which assists in exciton separation thus quenching light emission. Here, we introduce a technologically relevant method to optimize the hybrid structure's energy levels: ZnO and a tailored ladder-type oligophenylene. Using an organometallic donor interlayer the ZnO work function is substantially lowered eliminating the ZnO - L4P-sp3 interfacial energy level offsets enhancing the hybrid structure's radiative emission yield sevenfold.

[1]  Ray Murray,et al.  Hybrid Inorganic/Organic Semiconductor Heterostructures with Efficient Non‐Radiative Energy Transfer , 2006 .

[2]  Yana Vaynzof,et al.  Direct observation of photoinduced bound charge-pair states at an organic-inorganic semiconductor interface. , 2012, Physical review letters.

[3]  Raphael Schlesinger,et al.  Controlling the work function of ZnO and the energy-level alignment at the interface to organic semiconductors with a molecular electron acceptor , 2013 .

[4]  Chao Kong,et al.  Electroluminescence of ZnO nanorods/MEH-PPV heterostructure devices , 2010 .

[5]  Hadis Morkoç,et al.  Energy transfer in ZnO-anthracene hybrid structure , 2012 .

[6]  Fritz Henneberger,et al.  Electronic coupling of optical excitations in organic/inorganic semiconductor hybrid structures , 2008 .

[7]  B Liu,et al.  Hybrid III-nitride/organic semiconductor nanostructure with high efficiency nonradiative energy transfer for white light emitters. , 2013, Nano letters.

[8]  S Barlow,et al.  Efficient light emission from inorganic and organic semiconductor hybrid structures by energy-level tuning , 2015, Nature Communications.

[9]  Ishaq Musa,et al.  Investigation of the optical properties of polyfluorene/ZnO nanocomposites , 2011 .

[10]  Y. Gartstein,et al.  Hybrid resonant organic-inorganic nanostructures for optoelectronic applications. , 2011, Chemical reviews.

[11]  B. Lu,et al.  Mg composition dependent band offsets of Zn(1-x)Mg(x)O/ZnO heterojunctions. , 2013, Physical chemistry chemical physics : PCCP.

[12]  P. K. Giri,et al.  ZnO/anthracene based inorganic/organic nanowire heterostructure: Photoresponse and photoluminescence studies , 2012 .

[13]  Raphael Schlesinger,et al.  The Impact of Local Work Function Variations on Fermi Level Pinning of Organic Semiconductors , 2013 .

[14]  F. Bassani,et al.  Förster energy transfer from a semiconductor quantum well to an organic material overlayer , 1999 .

[15]  Fritz Henneberger,et al.  Extreme low-temperature molecular beam epitaxy of ZnO-based quantum structures , 2011 .

[16]  Andrey Bakin,et al.  ZnMgO‐ZnO quantum wells embedded in ZnO nanopillars: Towards realisation of nano‐LEDs , 2007 .

[17]  Zheng-Hong Lu,et al.  Universal energy-level alignment of molecules on metal oxides. , 2011, Nature materials.

[18]  Fritz Henneberger,et al.  Growth of high-quality ZnMgO epilayers and ZnO/ZnMgO quantum well structures by radical-source molecular-beam epitaxy on sapphire , 2005 .

[19]  Arup Neogi,et al.  Energy transfer induced enhancement of localized exciton emission in ZnO nanoparticle–anthracene hybrid films , 2013 .

[20]  Pavlos G. Lagoudakis,et al.  Efficient dipole-dipole coupling of Mott-Wannier and Frenkel excitons in (Ga,In)N quantum well/polyfluorene semiconductor heterostructures , 2007 .

[21]  Song Guo,et al.  n‐Doping of Organic Electronic Materials using Air‐Stable Organometallics , 2012, Advanced materials.

[22]  Lars Hultman,et al.  Dependence of resonance energy transfer on exciton dimensionality. , 2011, Physical review letters.

[23]  Roberto Cingolani,et al.  Interaction Scheme and Temperature Behavior of Energy Transfer in a Light‐Emitting Inorganic‐Organic Composite System , 2008 .

[24]  J. Puls,et al.  Converting Wannier into Frenkel excitons in an inorganic/organic hybrid semiconductor nanostructure. , 2006, Physical review letters.