On invariant notions of Segre varieties in binary projective spaces

Invariant notions of a class of Segre varieties $${\mathcal{S}_{(m)}(2)}$$ of PG(2m − 1, 2) that are direct products of m copies of PG(1, 2), m being any positive integer, are established and studied. We first demonstrate that there exists a hyperbolic quadric that contains $${\mathcal{S}_{(m)}(2)}$$ and is invariant under its projective stabiliser group $${G_{{\mathcal{S}}_{(m)}(2)}}$$ . By embedding PG(2m − 1, 2) into PG(2m − 1, 4), a basis of the latter space is constructed that is invariant under $${G_{{\mathcal{S}}_{(m)}(2)}}$$ as well. Such a basis can be split into two subsets whose spans are either real or complex-conjugate subspaces according as m is even or odd. In the latter case, these spans can, in addition, be viewed as indicator sets of a $${G_{{\mathcal{S}}_{(m)}(2)}}$$ -invariant geometric spread of lines of PG(2m − 1, 2). This spread is also related with a $${G_{{\mathcal{S}}_{(m)}(2)}}$$ -invariant non-singular Hermitian variety. The case m = 3 is examined in detail to illustrate the theory. Here, the lines of the invariant spread are found to fall into four distinct orbits under $${G_{{\mathcal{S}}_{(m)}(2)}}$$ , while the points of PG(7, 2) form five orbits.

[1]  P. Comon,et al.  Generic and typical ranks of multi-way arrays , 2009 .

[2]  A. Cossidente,et al.  Maximal Subgroups of Finite Orthogonal Groups Stabilizing Spreads of Lines , 2006 .

[3]  Hoshang Heydari,et al.  Geometrical Structure of Entangled States and the Secant Variety , 2006, Quantum Inf. Process..

[4]  Dragan Marusic,et al.  The genus of the GRAY graph is 7 , 2005, Eur. J. Comb..

[5]  Ron Shaw,et al.  The cubic Segre variety in PG(5, 2) , 2009, Des. Codes Cryptogr..

[6]  B. Polster A Geometrical Picture Book , 1998 .

[7]  H.-J. Samaga,et al.  Cross Ratios and a Unifying Treatment of Von Staudt’s Notion of Reeller Zug , 1981 .

[8]  J. Thas,et al.  General Galois geometries , 1992 .

[9]  J. Dieudonné,et al.  La géométrie des groupes classiques , 1963 .

[10]  R. Shaw,et al.  The polynomial degrees of Grassmann and Segre varieties over GF(2) , 2008, Discret. Math..

[11]  P. Wilson,et al.  DISCRIMINANTS, RESULTANTS AND MULTIDIMENSIONAL DETERMINANTS (Mathematics: Theory and Applications) , 1996 .

[12]  P. K. Suetin,et al.  Linear Algebra and Geometry , 1989 .

[13]  Mark A. Ronan,et al.  Embeddings and Hyperplanes of Discrete Geometries , 1987, Eur. J. Comb..

[14]  J. Hirschfeld Projective Geometries Over Finite Fields , 1980 .

[15]  David G. Glynn,et al.  The modular counterparts of Cayley's hyperdeterminants , 1998, Bulletin of the Australian Mathematical Society.

[16]  I. M. Gelʹfand,et al.  Discriminants, Resultants, and Multidimensional Determinants , 1994 .

[17]  Beniamino Segre,et al.  Teoria di Galois, fibrazioni proiettive e geometrie non desarguesiane , 1964 .

[18]  A. Brouwer,et al.  Near polygons and Fischer spaces , 1994 .

[19]  R. Baer Partitionen abelscher Gruppen , 1963 .

[20]  D. Djoković,et al.  On polynomial invariants of several qubits , 2008, 0804.1661.

[21]  W. Greub Linear Algebra , 1981 .

[22]  S. Gołab,et al.  W. Burau, Mehrdimensionale projektive und höhere Geometrie. 436 S. m. 25 Abb. Berlin 1961. VEB Deutscher Verlag der Wissenschaften. Preis geb. DM 43,— , 1962 .

[23]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[24]  Werner Burau,et al.  Mehrdimensionale Projektive und Höhere Geometrie , 1961 .

[25]  P. L'evay,et al.  Three fermions with six single-particle states can be entangled in two inequivalent ways , 2008, 0806.4076.

[26]  Chris Peterson,et al.  Induction for secant varieties of Segre varieties , 2006, math/0607191.