Multispectral imaging with type II superlattice detectors
暂无分享,去创建一个
Michael T. Eismann | Thomas R. Nelson | Gamini Ariyawansa | Joshua M. Duran | John E. Scheihing | Matt Grupen | M. Grupen | M. Eismann | J. Duran | G. Ariyawansa | T. Nelson | J. Scheihing
[1] Meimei Z. Tidrow,et al. High quantum efficiency two color type-II InAs∕GaSb n-i-p-p-i-n photodiodes , 2008 .
[2] K. J. Riley,et al. Background and temperature dependent current‐voltage characteristics of HgCdTe photodiodes , 1982 .
[3] Yajun Wei,et al. Modeling of type-II InAs/GaSb superlattices using an empirical tight-binding method and interface engineering , 2004 .
[4] John F. Klem,et al. Comparison of nBn and nBp mid-wave barrier infrared photodetectors , 2010, OPTO.
[5] Matt Grupen,et al. An alternative treatment of heat flow for charge transport in semiconductor devices , 2009 .
[6] Arezou Khoshakhlagh,et al. Bias dependent dual band response from InAs∕Ga(In)Sb type II strain layer superlattice detectors , 2007 .
[7] Leo Esaki,et al. In1−xGaxAs‐GaSb1−yAsy heterojunctions by molecular beam epitaxy , 1977 .
[8] Jun Li,et al. Voltage-tunable four-color quantum-well infrared photodetectors , 2005 .
[9] E. Finkman,et al. Recombination mechanisms in p-type HgCdTe: Freezeout and background flux effects , 1985 .
[10] A. G. U. Perera,et al. Wavelength agile superlattice quantum dot infrared photodetector , 2009 .
[11] Paul D. LeVan,et al. 8- to 9-μm and 14- to 15-μm two-color 640x486 GaAs/AlGaAs quantum well infrared photodetector (QWIP) focal plane array camera , 1999, Defense, Security, and Sensing.
[12] Sumith V. Bandara,et al. Doping dependence of minority carrier lifetime in long-wave Sb-based type II superlattice infrared detector materials , 2011 .
[13] Filip Neele,et al. Two-color infrared missile warning sensors , 2005, SPIE Defense + Commercial Sensing.
[14] Manijeh Razeghi,et al. Dark current suppression in type II InAs∕GaSb superlattice long wavelength infrared photodiodes with M-structure barrier , 2007 .
[15] Craig R. Schwartz,et al. Target detection using infrared spectral sensors , 1996, Optics & Photonics.
[16] Arthur C. Gossard,et al. Electrical and optical properties of infrared photodiodes using the InAs/Ga1−xInxSb superlattice in heterojunctions with GaSb , 1996 .
[17] David L. Wilson,et al. Search and detection comparing midwave and longwave infrared , 2009 .
[18] Jamie D. Phillips,et al. Detailed study of above bandgap optical absorption in HgCdTe , 2005 .
[19] S Krishna,et al. Bias Switchable Dual-Band InAs/GaSb Superlattice Detector With pBp Architecture , 2011, IEEE Photonics Journal.
[20] Manijeh Razeghi,et al. Surface leakage reduction in narrow band gap type-II antimonide-based superlattice photodiodes , 2009 .
[21] Gregory Belenky,et al. Minority carrier lifetime in type-2 InAs–GaSb strained-layer superlattices and bulk HgCdTe materials , 2010 .
[22] O. Gravrand,et al. Dual-band infrared detectors made on high-quality HgCdTe epilayers grown by molecular beam epitaxy on CdZnTe or CdTe/Ge substrates , 2004 .
[23] R. DeWames,et al. Minority carrier lifetime characteristics in type II InAs/GaSb LWIR superlattice n+πp+ photodiodes , 2009, Defense + Commercial Sensing.
[24] P. S. Dutta,et al. Below bandgap optical absorption in tellurium-doped GaSb , 2005 .
[25] Frank Rutz,et al. InAs/GaSb superlattices for advanced infrared focal plane arrays , 2009 .
[26] Stephen B. Campana. Passive electro-optical systems , 1993 .
[27] Gail J. Brown,et al. Effect of interfaces and the spin-orbit band on the band gaps of InAs/GaSb superlattices beyond the standard envelope-function approximation , 2004 .
[28] Andrew J. Williamson,et al. InAs quantum dots: Predicted electronic structure of free-standing versus GaAs-embedded structures , 1999 .
[29] Antoni Rogalski,et al. InAs/GaInSb superlattices as a promising material system for third generation infrared detectors , 2005, Other Conferences.
[30] Manijeh Razeghi,et al. Substrate removal for high quantum efficiency back side illuminated type-II InAs∕GaSb photodetectors , 2007 .
[31] Martin Walther,et al. Passivation of InAs∕(GaIn)Sb short-period superlattice photodiodes with 10μm cutoff wavelength by epitaxial overgrowth with AlxGa1−xAsySb1−y , 2005 .
[32] Alexander Soibel,et al. Low dark current long-wave infrared InAs/GaSb superlattice detectors , 2010 .
[33] Frank Fuchs,et al. Investigation of trap-assisted tunneling current in InAs/(GaIn)Sb superlattice long-wavelength photodiodes , 2002 .
[34] Jerry R. Meyer,et al. MULTIBAND COUPLING AND ELECTRONIC STRUCTURE OF (INAS)N/(GASB)N SUPERLATTICES , 1999 .
[35] Antoni Rogalski,et al. Intrinsic infrared detectors , 1988 .
[36] H. Ehrenreich,et al. Long wavelength InAs/InGaSb infrared detectors: Optimization of carrier lifetimes , 1995 .
[37] C. Hilsum. Semiconductors and Semimetals Vol 11: Solar Cells , 1976 .
[38] Ron Kaspi,et al. Spectral blueshift and improved luminescent properties with increasing GaSb layer thickness in InAs–GaSb type-II superlattices , 2001 .
[39] Jerry R. Meyer,et al. Analysis and performance of type-II superlattice infrared detectors , 2011 .
[40] Christian Mailhiot,et al. Long‐wavelength infrared detectors based on strained InAs–Ga1−xInxSb type‐II superlattices , 1989 .
[41] David R. Rhiger,et al. Performance Comparison of Long-Wavelength Infrared Type II Superlattice Devices with HgCdTe , 2011 .
[42] L. Esaki,et al. Electronic properties of InAs_GaSb superlattices , 1980 .
[43] David Z. Ting,et al. Description of bulk inversion asymmetry in the effective-bond-orbital model , 2003 .
[44] Frank Rutz,et al. Dual-Color InAs/GaSb Superlattice Focal-Plane Array Technology , 2011 .
[45] M. L. Tilton,et al. Comparing pseudopotential predictions for InAs/GaSb superlattices , 2002 .
[46] G. Wicks,et al. nBn detector, an infrared detector with reduced dark current and higher operating temperature , 2006 .
[47] B. Laikhtman,et al. In-plane and growth direction electron cyclotron effective mass in short period InAs/GaSb semiconductor superlattices , 2011 .
[48] Alex Zunger,et al. Pseudopotential calculations of band gaps and band edges of short-period (InAs) n /(GaSb) m superlattices with different substrates, layer orientations, and interfacial bonds , 2008 .
[49] Ron Kaspi,et al. Absorbance spectroscopy and identification of valence subband transitions in type-II InAs/GaSb superlattices , 2000 .
[50] Leo Esaki,et al. Observation of semiconductor‐semimetal transition in InAs‐GaSb superlattices , 1979 .
[51] George Theodorou,et al. Theory of electronic and optical properties of bulk AlSb and InAs and InAs/AlSb superlattices , 2000 .
[52] M. Razeghi,et al. High-Performance Focal Plane Array Based on InAs–GaSb Superlattices With a 10-$\mu{\hbox {m}}$ Cutoff Wavelength , 2008, IEEE Journal of Quantum Electronics.
[53] D. Ting,et al. A high-performance long wavelength superlattice complementary barrier infrared detector , 2009 .
[54] Frank Fuchs,et al. Magneto-optics of InAs/Ga1−xInxSb infrared superlattice diodes , 1998 .
[55] Heather J. Haugan,et al. Calculation of Vertical and Horizontal Mobilities in InAs/GaSb Superlattices (Postprint) , 2011 .
[56] Joel B. Montgomery,et al. Evaluation of two-color missile detection algorithms against real backgrounds , 2000, SPIE Defense + Commercial Sensing.
[57] F. C. Case,et al. Independently accessed back-to-back HgCdTe photodiodes: A new dual-band infrared detector , 1995 .