Multispectral imaging with type II superlattice detectors

Infrared (IR) focal plane arrays (FPAs) with multispectral detector elements promise significant advantages for airborne threat warning, surveillance, and targeting applications. At present, the use of type II superlattice (T2SL) structures based on the 6.1Å-family materials (InAs, GaSb, and AlSb) has become an area of interest for developing IR detectors and their FPAs. The ability to vary the bandgap in the IR range, suppression of Auger processes, prospective reduction of Shockley-Read-Hall centers by improved material growth capabilities, and the material stability are a few reasons for the predicted dominance of the T2SL technology over presently leading HgCdTe and quantum well technologies. The focus of the work reported here is on the development of T2SL based dual-band IR detectors and their applicability for multispectral imaging. A new NpBPN detector designed for the detection of IR in the 3-5 and 8-12 μm atmospheric windows is presented; comparing its advantages over other T2SL based approaches. One of the key challenges of the T2SL dual-band detectors is the spectral crosstalk associated with the LWIR band. The properties of the state-of-the-art T2SLs (i.e., absorption coefficient, minority carrier lifetime and mobility, etc.) and the present growth limitations that impact spectral crosstalk are discussed.

[1]  Meimei Z. Tidrow,et al.  High quantum efficiency two color type-II InAs∕GaSb n-i-p-p-i-n photodiodes , 2008 .

[2]  K. J. Riley,et al.  Background and temperature dependent current‐voltage characteristics of HgCdTe photodiodes , 1982 .

[3]  Yajun Wei,et al.  Modeling of type-II InAs/GaSb superlattices using an empirical tight-binding method and interface engineering , 2004 .

[4]  John F. Klem,et al.  Comparison of nBn and nBp mid-wave barrier infrared photodetectors , 2010, OPTO.

[5]  Matt Grupen,et al.  An alternative treatment of heat flow for charge transport in semiconductor devices , 2009 .

[6]  Arezou Khoshakhlagh,et al.  Bias dependent dual band response from InAs∕Ga(In)Sb type II strain layer superlattice detectors , 2007 .

[7]  Leo Esaki,et al.  In1−xGaxAs‐GaSb1−yAsy heterojunctions by molecular beam epitaxy , 1977 .

[8]  Jun Li,et al.  Voltage-tunable four-color quantum-well infrared photodetectors , 2005 .

[9]  E. Finkman,et al.  Recombination mechanisms in p-type HgCdTe: Freezeout and background flux effects , 1985 .

[10]  A. G. U. Perera,et al.  Wavelength agile superlattice quantum dot infrared photodetector , 2009 .

[11]  Paul D. LeVan,et al.  8- to 9-μm and 14- to 15-μm two-color 640x486 GaAs/AlGaAs quantum well infrared photodetector (QWIP) focal plane array camera , 1999, Defense, Security, and Sensing.

[12]  Sumith V. Bandara,et al.  Doping dependence of minority carrier lifetime in long-wave Sb-based type II superlattice infrared detector materials , 2011 .

[13]  Filip Neele,et al.  Two-color infrared missile warning sensors , 2005, SPIE Defense + Commercial Sensing.

[14]  Manijeh Razeghi,et al.  Dark current suppression in type II InAs∕GaSb superlattice long wavelength infrared photodiodes with M-structure barrier , 2007 .

[15]  Craig R. Schwartz,et al.  Target detection using infrared spectral sensors , 1996, Optics & Photonics.

[16]  Arthur C. Gossard,et al.  Electrical and optical properties of infrared photodiodes using the InAs/Ga1−xInxSb superlattice in heterojunctions with GaSb , 1996 .

[17]  David L. Wilson,et al.  Search and detection comparing midwave and longwave infrared , 2009 .

[18]  Jamie D. Phillips,et al.  Detailed study of above bandgap optical absorption in HgCdTe , 2005 .

[19]  S Krishna,et al.  Bias Switchable Dual-Band InAs/GaSb Superlattice Detector With pBp Architecture , 2011, IEEE Photonics Journal.

[20]  Manijeh Razeghi,et al.  Surface leakage reduction in narrow band gap type-II antimonide-based superlattice photodiodes , 2009 .

[21]  Gregory Belenky,et al.  Minority carrier lifetime in type-2 InAs–GaSb strained-layer superlattices and bulk HgCdTe materials , 2010 .

[22]  O. Gravrand,et al.  Dual-band infrared detectors made on high-quality HgCdTe epilayers grown by molecular beam epitaxy on CdZnTe or CdTe/Ge substrates , 2004 .

[23]  R. DeWames,et al.  Minority carrier lifetime characteristics in type II InAs/GaSb LWIR superlattice n+πp+ photodiodes , 2009, Defense + Commercial Sensing.

[24]  P. S. Dutta,et al.  Below bandgap optical absorption in tellurium-doped GaSb , 2005 .

[25]  Frank Rutz,et al.  InAs/GaSb superlattices for advanced infrared focal plane arrays , 2009 .

[26]  Stephen B. Campana Passive electro-optical systems , 1993 .

[27]  Gail J. Brown,et al.  Effect of interfaces and the spin-orbit band on the band gaps of InAs/GaSb superlattices beyond the standard envelope-function approximation , 2004 .

[28]  Andrew J. Williamson,et al.  InAs quantum dots: Predicted electronic structure of free-standing versus GaAs-embedded structures , 1999 .

[29]  Antoni Rogalski,et al.  InAs/GaInSb superlattices as a promising material system for third generation infrared detectors , 2005, Other Conferences.

[30]  Manijeh Razeghi,et al.  Substrate removal for high quantum efficiency back side illuminated type-II InAs∕GaSb photodetectors , 2007 .

[31]  Martin Walther,et al.  Passivation of InAs∕(GaIn)Sb short-period superlattice photodiodes with 10μm cutoff wavelength by epitaxial overgrowth with AlxGa1−xAsySb1−y , 2005 .

[32]  Alexander Soibel,et al.  Low dark current long-wave infrared InAs/GaSb superlattice detectors , 2010 .

[33]  Frank Fuchs,et al.  Investigation of trap-assisted tunneling current in InAs/(GaIn)Sb superlattice long-wavelength photodiodes , 2002 .

[34]  Jerry R. Meyer,et al.  MULTIBAND COUPLING AND ELECTRONIC STRUCTURE OF (INAS)N/(GASB)N SUPERLATTICES , 1999 .

[35]  Antoni Rogalski,et al.  Intrinsic infrared detectors , 1988 .

[36]  H. Ehrenreich,et al.  Long wavelength InAs/InGaSb infrared detectors: Optimization of carrier lifetimes , 1995 .

[37]  C. Hilsum Semiconductors and Semimetals Vol 11: Solar Cells , 1976 .

[38]  Ron Kaspi,et al.  Spectral blueshift and improved luminescent properties with increasing GaSb layer thickness in InAs–GaSb type-II superlattices , 2001 .

[39]  Jerry R. Meyer,et al.  Analysis and performance of type-II superlattice infrared detectors , 2011 .

[40]  Christian Mailhiot,et al.  Long‐wavelength infrared detectors based on strained InAs–Ga1−xInxSb type‐II superlattices , 1989 .

[41]  David R. Rhiger,et al.  Performance Comparison of Long-Wavelength Infrared Type II Superlattice Devices with HgCdTe , 2011 .

[42]  L. Esaki,et al.  Electronic properties of InAs_GaSb superlattices , 1980 .

[43]  David Z. Ting,et al.  Description of bulk inversion asymmetry in the effective-bond-orbital model , 2003 .

[44]  Frank Rutz,et al.  Dual-Color InAs/GaSb Superlattice Focal-Plane Array Technology , 2011 .

[45]  M. L. Tilton,et al.  Comparing pseudopotential predictions for InAs/GaSb superlattices , 2002 .

[46]  G. Wicks,et al.  nBn detector, an infrared detector with reduced dark current and higher operating temperature , 2006 .

[47]  B. Laikhtman,et al.  In-plane and growth direction electron cyclotron effective mass in short period InAs/GaSb semiconductor superlattices , 2011 .

[48]  Alex Zunger,et al.  Pseudopotential calculations of band gaps and band edges of short-period (InAs) n /(GaSb) m superlattices with different substrates, layer orientations, and interfacial bonds , 2008 .

[49]  Ron Kaspi,et al.  Absorbance spectroscopy and identification of valence subband transitions in type-II InAs/GaSb superlattices , 2000 .

[50]  Leo Esaki,et al.  Observation of semiconductor‐semimetal transition in InAs‐GaSb superlattices , 1979 .

[51]  George Theodorou,et al.  Theory of electronic and optical properties of bulk AlSb and InAs and InAs/AlSb superlattices , 2000 .

[52]  M. Razeghi,et al.  High-Performance Focal Plane Array Based on InAs–GaSb Superlattices With a 10-$\mu{\hbox {m}}$ Cutoff Wavelength , 2008, IEEE Journal of Quantum Electronics.

[53]  D. Ting,et al.  A high-performance long wavelength superlattice complementary barrier infrared detector , 2009 .

[54]  Frank Fuchs,et al.  Magneto-optics of InAs/Ga1−xInxSb infrared superlattice diodes , 1998 .

[55]  Heather J. Haugan,et al.  Calculation of Vertical and Horizontal Mobilities in InAs/GaSb Superlattices (Postprint) , 2011 .

[56]  Joel B. Montgomery,et al.  Evaluation of two-color missile detection algorithms against real backgrounds , 2000, SPIE Defense + Commercial Sensing.

[57]  F. C. Case,et al.  Independently accessed back-to-back HgCdTe photodiodes: A new dual-band infrared detector , 1995 .