Acid-sensing ion channels: advances, questions and therapeutic opportunities

Extracellular acid can have important effects on neuron function. In central and peripheral neurons, acid-sensing ion channels (ASICs) have emerged as key receptors for extracellular protons, and recent studies suggest diverse roles for these channels in the pathophysiology of pain, ischemic stroke and psychiatric disease. ASICs have also been implicated in mechanosensation in the peripheral nervous system and in neurotransmission in the central nervous system. Here, we briefly review advances in our understanding of ASICs, their potential contributions to disease, and the possibility for their therapeutic modification.

[1]  P A Poole-Wilson,et al.  The time of onset and severity of acidosis in myocardial ischaemia. , 1980, Journal of molecular and cellular cardiology.

[2]  Xi Lin,et al.  Acid-Sensing Ion Channel 2 Contributes a Major Component to Acid-Evoked Excitatory Responses in Spiral Ganglion Neurons and Plays a Role in Noise Susceptibility of Mice , 2004, The Journal of Neuroscience.

[3]  Alain Lecoq,et al.  Isolation of a Tarantula Toxin Specific for a Class of Proton-gated Na+ Channels* , 2000, The Journal of Biological Chemistry.

[4]  R. Fitzsimonds,et al.  Distribution, subcellular localization and ontogeny of ASIC1 in the mammalian central nervous system , 2003, The Journal of physiology.

[5]  J. Wood,et al.  Annexin II Light Chain p11 Promotes Functional Expression of Acid-sensing Ion Channel ASIC1a* , 2005, Journal of Biological Chemistry.

[6]  Gero Miesenböck,et al.  Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins , 1998, Nature.

[7]  M. Lazdunski,et al.  H+-gated cation channels: neuronal acid sensors in the NaC/DEG family of ion channels , 1998, Current Opinion in Neurobiology.

[8]  B. Hyman,et al.  BNaC1 and BNaC2 constitute a new family of human neuronal sodium channels related to degenerins and epithelial sodium channels. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[9]  M. Chalfie,et al.  Genetic interactions affecting touch sensitivity in Caenorhabditis elegans. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[10]  G. Lewin,et al.  The sensory mechanotransduction ion channel ASIC2 (acid sensitive ion channel 2) is regulated by neurotrophin availability , 2005, Neuroscience.

[11]  D. Gruol,et al.  Hydrogen ions have multiple effects on the excitability of cultured mammalian neurons , 1980, Brain Research.

[12]  M. Paré,et al.  ASIC3, an acid-sensing ion channel, is expressed in metaboreceptive sensory neurons , 2005, Molecular pain.

[13]  P. Séguéla,et al.  Transgenic Expression of a Dominant-Negative ASIC3 Subunit Leads to Increased Sensitivity to Mechanical and Inflammatory Stimuli , 2005, The Journal of Neuroscience.

[14]  P. Anand,et al.  Increased acid-sensing ion channel ASIC-3 in inflamed human intestine , 2001, European journal of gastroenterology & hepatology.

[15]  M. Lazdunski,et al.  The Acid-sensitive Ionic Channel Subunit ASIC and the Mammalian Degenerin MDEG Form a Heteromultimeric H+-gated Na+ Channel with Novel Properties* , 1997, The Journal of Biological Chemistry.

[16]  E. Mccleskey,et al.  Acid-evoked currents in cardiac sensory neurons: A possible mediator of myocardial ischemic sensation. , 1999, Circulation research.

[17]  S. DeVries,et al.  Exocytosed Protons Feedback to Suppress the Ca2+ Current in Mammalian Cone Photoreceptors , 2001, Neuron.

[18]  M. Lazdunski,et al.  Protein Kinase C Stimulates the Acid-sensing Ion Channel ASIC2a via the PDZ Domain-containing Protein PICK1* , 2002, The Journal of Biological Chemistry.

[19]  M. Minami,et al.  Global Ischemia Induces Expression of Acid-Sensing Ion Channel 2a in Rat Brain , 2001, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[20]  G. Taylor,et al.  Phosphorus nuclear magnetic resonance of perfused working rat hearts , 1977, Nature.

[21]  M. Welsh,et al.  Cloning and Expression of a Novel Human Brain Na Channel (*) , 1996, The Journal of Biological Chemistry.

[22]  D. Benos,et al.  Immunolocalization of the acid-sensing ion channel 2a in the rat cerebellum , 2003, Histochemistry and Cell Biology.

[23]  P. Reeh,et al.  Pain due to tissue acidosis: a mechanism for inflammatory and ischemic myalgia? , 1996, Neuroscience Letters.

[24]  M. Welsh,et al.  PSD-95 and Lin-7b Interact with Acid-sensing Ion Channel-3 and Have Opposite Effects on H+-gated Current* , 2004, Journal of Biological Chemistry.

[25]  M. Welsh,et al.  Interaction of the synaptic protein PICK1 (protein interacting with C kinase 1) with the non-voltage gated sodium channels BNC1 (brain Na+ channel 1) and ASIC (acid-sensing ion channel). , 2002, The Biochemical journal.

[26]  T. Tsintsadze,et al.  Acid sensing ionic channels: modulation by redox reagents. , 2005, Biochimica et biophysica acta.

[27]  L. Schild,et al.  Epithelial sodium channel/degenerin family of ion channels: a variety of functions for a shared structure. , 2002, Physiological reviews.

[28]  M. Welsh,et al.  Biochemical Basis of Touch Perception: Mechanosensory Function of Degenerin/Epithelial Na+ Channels* , 2002, The Journal of Biological Chemistry.

[29]  P. Cesare,et al.  A new member of the acid‐sensing ion channel family , 2000, Neuroreport.

[30]  T. Brennan,et al.  The mammalian sodium channel BNC1 is required for normal touch sensation , 2000, Nature.

[31]  C. Petit,et al.  Characterisation of DRASIC in the mouse inner ear , 2004, Hearing Research.

[32]  M. Lazdunski,et al.  ProInflammatory Mediators, Stimulators of Sensory Neuron Excitability via the Expression of Acid-Sensing Ion Channels , 2002, The Journal of Neuroscience.

[33]  F. Abboud,et al.  A Molecular Component of the Arterial Baroreceptor Mechanotransducer , 1998, Neuron.

[34]  Tian-Le Xu,et al.  Coupling between NMDA Receptor and Acid-Sensing Ion Channel Contributes to Ischemic Neuronal Death , 2005, Neuron.

[35]  J. McDougall,et al.  Inhibitory effect of amiloride and gadolinium on fine afferent nerves in the rat knee: evidence of mechanogated ion channels in joints , 2005, Experimental Brain Research.

[36]  Bruce R. Ransom,et al.  pH and brain function , 1998 .

[37]  M. Lazdunski,et al.  The Mammalian Degenerin MDEG, an Amiloride-sensitive Cation Channel Activated by Mutations Causing Neurodegeneration in Caenorhabditis elegans(*) , 1996, The Journal of Biological Chemistry.

[38]  L. Schild,et al.  The heterotetrameric architecture of the epithelial sodium channel (ENaC) , 1998, The EMBO journal.

[39]  M. Lazdunski,et al.  A proton-gated cation channel involved in acid-sensing , 1997, Nature.

[40]  M. Lazdunski,et al.  ASIC‐like, proton‐activated currents in rat hippocampal neurons , 2002, The Journal of physiology.

[41]  O. Krishtal,et al.  Rapid extracellular pH transients related to synaptic transmission in rat hippocampal slices , 1987, Brain Research.

[42]  M. Lazdunski,et al.  Knockout of the ASIC2 channel in mice does not impair cutaneous mechanosensation, visceral mechanonociception and hearing , 2004, The Journal of physiology.

[43]  O. Krishtal The ASICs: Signaling molecules? Modulators? , 2003, Trends in Neurosciences.

[44]  D. Corey,et al.  Transport and Localization of the DEG/ENaC Ion Channel BNaC1α to Peripheral Mechanosensory Terminals of Dorsal Root Ganglia Neurons , 2001, The Journal of Neuroscience.

[45]  M. Welsh,et al.  Acid-sensing Ion Channel 2 (ASIC2) Modulates ASIC1 H+-activated Currents in Hippocampal Neurons* , 2004, Journal of Biological Chemistry.

[46]  E. Perl,et al.  The molecular basis of pain induction , 1999 .

[47]  J. Wemmie,et al.  Different contributions of ASIC channels 1a, 2, and 3 in gastrointestinal mechanosensory function , 2005, Gut.

[48]  J. Robbins,et al.  The Discovery and Characterization of a Proton-Gated Sodium Current in Rat Retinal Ganglion Cells , 2004, The Journal of Neuroscience.

[49]  T. Sugimoto,et al.  The co-expression of ASIC3 with calcitonin gene-related peptide and parvalbumin in the rat trigeminal ganglion , 2002, Brain Research.

[50]  R. Poulton,et al.  Non-associative fear acquisition: a review of the evidence from retrospective and longitudinal research. , 2002, Behaviour research and therapy.

[51]  M. Lazdunski,et al.  Molecular Cloning of a Non-inactivating Proton-gated Na+ Channel Specific for Sensory Neurons* , 1997, The Journal of Biological Chemistry.

[52]  E. Wright,et al.  Number of Subunits Comprising the Epithelial Sodium Channel* , 1999, The Journal of Biological Chemistry.

[53]  M. Lazdunski,et al.  The Multivalent PDZ Domain-containing Protein CIPP Is a Partner of Acid-sensing Ion Channel 3 in Sensory Neurons* , 2002, The Journal of Biological Chemistry.

[54]  K. Kaila,et al.  Modulation of pH by neuronal activity , 1992, Trends in Neurosciences.

[55]  M. Welsh,et al.  DRASIC contributes to pH-gated currents in large dorsal root ganglion sensory neurons by forming heteromultimeric channels. , 2002, Journal of neurophysiology.

[56]  M. Lazdunski,et al.  A new sea anemone peptide, APETx2, inhibits ASIC3, a major acid‐sensitive channel in sensory neurons , 2004, The EMBO journal.

[57]  D. Attwell,et al.  Modulation of ASIC channels in rat cerebellar purkinje neurons by ischaemia‐related signals , 2002, The Journal of physiology.

[58]  M. Lazdunski,et al.  Regulation of Sensory Neuron-specific Acid-sensing Ion Channel 3 by the Adaptor Protein Na+/H+ Exchanger Regulatory Factor-1* , 2006, Journal of Biological Chemistry.

[59]  John A. Wemmie,et al.  The Acid-Activated Ion Channel ASIC Contributes to Synaptic Plasticity, Learning, and Memory , 2002, Neuron.

[60]  M. Lazdunski,et al.  Acid-Sensing Ion Channel 2 Is Important for Retinal Function and Protects against Light-Induced Retinal Degeneration , 2004, The Journal of Neuroscience.

[61]  R. Shulman,et al.  Intracellular pH in human skeletal muscle by 1H NMR. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[62]  F. Abboud,et al.  Extracellular acidosis increases neuronal cell calcium by activating acid-sensing ion channel 1a. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[63]  P. Reeh,et al.  Sustained graded pain and hyperalgesia from harmless experimental tissue acidosis in human skin , 1993, Neuroscience Letters.

[64]  M. Welsh,et al.  cAMP-dependent protein kinase phosphorylation of the acid-sensing ion channel-1 regulates its binding to the protein interacting with C-kinase-1 , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[65]  Tian-Le Xu,et al.  Calcium-permeable Acid-sensing Ion Channel Is a Molecular Target of the Neurotoxic Metal Ion Lead* , 2006, Journal of Biological Chemistry.

[66]  M. Lazdunski,et al.  Cloning and functional expression of a novel degenerin‐like Na+ channel gene in mammals , 1999, The Journal of physiology.

[67]  S. Shimada,et al.  Amiloride-blockable acid-sensing ion channels are leading acid sensors expressed in human nociceptors. , 2002, The Journal of clinical investigation.

[68]  J. Wemmie,et al.  Stomatin Modulates Gating of Acid-sensing Ion Channels* , 2004, Journal of Biological Chemistry.

[69]  H. Kalbacher,et al.  The Tarantula Toxin Psalmotoxin 1 Inhibits Acid-sensing Ion Channel (ASIC) 1a by Increasing Its Apparent H+ Affinity , 2005, The Journal of general physiology.

[70]  T. Varming Proton-gated ion channels in cultured mouse cortical neurons , 1999, Neuropharmacology.

[71]  T. Brennan,et al.  The ion channel ASIC1 contributes to visceral but not cutaneous mechanoreceptor function. , 2004, Gastroenterology.

[72]  D. Cockayne,et al.  Acid‐sensing ion channels ASIC2 and ASIC3 do not contribute to mechanically activated currents in mammalian sensory neurones , 2004, The Journal of physiology.

[73]  R. Schicho,et al.  Increased expression of TRPV1 receptor in dorsal root ganglia by acid insult of the rat gastric mucosa , 2004, The European journal of neuroscience.

[74]  Acid-sensing ion channel 3 matches the acid-gated current in cardiac ischemia-sensing neurons , 2001 .

[75]  M. Welsh,et al.  Neuroprotection in Ischemia Blocking Calcium-Permeable Acid-Sensing Ion Channels , 2004, Cell.

[76]  S. McMahon,et al.  Acid-Induced Pain and Its Modulation in Humans , 2004, The Journal of Neuroscience.

[77]  E. Mccleskey,et al.  Lactate enhances the acid-sensing Na+ channel on ischemia-sensing neurons , 2001, Nature Neuroscience.

[78]  John A Wemmie,et al.  Overexpression of acid-sensing ion channel 1a in transgenic mice increases acquired fear-related behavior. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[79]  G. Dubé,et al.  Electrophysiological and in vivo characterization of A-317567, a novel blocker of acid sensing ion channels , 2005, Pain.

[80]  E. Mccleskey,et al.  Protons Open Acid-Sensing Ion Channels by Catalyzing Relief of Ca2+ Blockade , 2003, Neuron.

[81]  O. Krishtal,et al.  A receptor for protons in the membrane of sensory neurons may participate in nociception , 1981, Neuroscience.

[82]  C. Stucky,et al.  Chronic hyperalgesia induced by repeated acid injections in muscle is abolished by the loss of ASIC3, but not ASIC1 , 2003, Pain.

[83]  M. Brownstein,et al.  A role for ASIC3 in the modulation of high-intensity pain stimuli , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[84]  M. Welsh,et al.  Neuropeptide FF and FMRFamide Potentiate Acid-Evoked Currents from Sensory Neurons and Proton-Gated DEG/ENaC Channels , 2000, Neuron.

[85]  M. Lazdunski,et al.  Silencing Acid-Sensing Ion Channel 1a Alters Cone-Mediated Retinal Function , 2006, The Journal of Neuroscience.

[86]  M. Welsh,et al.  Heteromultimers of DEG/ENaC subunits form H+-gated channels in mouse sensory neurons , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[87]  X. Ortiz-González,et al.  An acid sensing ion channel (ASIC) localizes to small primary afferent neurons in rats , 1998, Neuroreport.

[88]  W. A. Johnson,et al.  Ripped Pocket and Pickpocket, Novel Drosophila DEG/ENaC Subunits Expressed in Early Development and in Mechanosensory Neurons , 1998, The Journal of cell biology.

[89]  S. Kellenberger,et al.  Modulatory effects of acid-sensing ion channels on action potential generation in hippocampal neurons. , 2004, American journal of physiology. Cell physiology.

[90]  Akira Inagaki,et al.  Amiloride-Insensitive Currents of the Acid-Sensing Ion Channel-2a (ASIC2a)/ASIC2b Heteromeric Sour-Taste Receptor Channel , 2003, The Journal of Neuroscience.

[91]  D. Corey,et al.  The PDZ Domain Protein PICK1 and the Sodium Channel BNaC1 Interact and Localize at Mechanosensory Terminals of Dorsal Root Ganglion Neurons and Dendrites of Central Neurons* , 2002, The Journal of Biological Chemistry.

[92]  U. Keller,et al.  Effect of systemic pH on pHi and lactic acid generation in exhaustive forearm exercise. , 1988, The American journal of physiology.

[93]  Nektarios Tavernarakis,et al.  Closing in on a mammalian touch receptor , 2000, Nature Neuroscience.

[94]  K. Keyser,et al.  Rabbit retinal neurons and glia express a variety of ENaC/DEG subunits. , 2002, American journal of physiology. Cell physiology.

[95]  S. Shimada,et al.  In situ hybridization evidence for the coexistence of ASIC and TRPV1 within rat single sensory neurons. , 2005, Brain research. Molecular brain research.

[96]  William H Baldridge,et al.  Proton-Mediated Feedback Inhibition of Presynaptic Calcium Channels at the Cone Photoreceptor Synapse , 2005, The Journal of Neuroscience.

[97]  R. Dickerhoff1,et al.  Schmerzkrisen bei Patienten mit Sichelzellerkrankungen , 1995 .

[98]  B. Siesjö,et al.  Acidosis-related damage. , 1996, Advances in neurology.

[99]  H. Weinans,et al.  Identification of acid-sensing ion channels in bone. , 2005, Biochemical and biophysical research communications.

[100]  M. Lazdunski,et al.  Nonsteroid Anti-Inflammatory Drugs Inhibit Both the Activity and the Inflammation-Induced Expression of Acid-Sensing Ion Channels in Nociceptors , 2001, The Journal of Neuroscience.

[101]  M. Gerstein,et al.  Proton sensitivity of ASIC1 appeared with the rise of fishes by changes of residues in the region that follows TM1 in the ectodomain of the channel , 2005, The Journal of physiology.

[102]  O. Poirot,et al.  Selective Regulation of Acid-sensing Ion Channel 1 by Serine Proteases* , 2004, Journal of Biological Chemistry.

[103]  Ping Zhang,et al.  Functional implications of the localization and activity of acid-sensitive channels in rat peripheral nervous system , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[104]  Stephen W. Wilson,et al.  A Family of Acid-sensing Ion Channels from the Zebrafish , 2004, Journal of Biological Chemistry.

[105]  John A. Wemmie,et al.  Acid-Sensing Ion Channel 1 Is Localized in Brain Regions with High Synaptic Density and Contributes to Fear Conditioning , 2003, The Journal of Neuroscience.

[106]  M. Lazdunski,et al.  A Modulatory Subunit of Acid Sensing Ion Channels in Brain and Dorsal Root Ganglion Cells* , 1997, The Journal of Biological Chemistry.

[107]  M. Lazdunski,et al.  Zn2+ and H+ Are Coactivators of Acid-sensing Ion Channels* , 2001, The Journal of Biological Chemistry.

[108]  D. Klein False suffocation alarms, spontaneous panics, and related conditions. An integrative hypothesis. , 1993, Archives of general psychiatry.