Progressive Subdivision Curves for Aerodynamic Shape Optimisation

This work presents a shape parameterisation method based on multi-resolutional subdivision curves and investigates its application to aerodynamic optimisation. Subdivision curves are defined as the limit curve of a recursive application of a subdivision rule, which provides an intrinsically hierarchical set of control polygons that can be used to provide surface control at varying levels of fidelity. This is used to construct a progressive aerofoil parameterisation that allows an optimisation to be initialised with a small number of design variables, and then periodically increased in resolution through the optimisation. This brings the benefits of a low dimensional design space (high convergence rate, increased robustness, low cost finite-difference gradients) while still allowing the final results to be from a high-dimensional design space. In this work the progressive refinement technique is tested on a variety of optimisation problems. For each problem a range of ‘static’ (non-progressive) subdivision schemes (equivalent to cubic B-splines) are also used as a control group. For all the optimisation cases the progressive schemes perform comparably or better than the static methods, often providing a significant computational advantage, and in many cases allowing a solution to be found when the static method would otherwise finish prematurely in a local optimum.

[1]  Jean-Antoine Désidéri,et al.  Nested and self-adaptive Bézier parameterizations for shape optimization , 2007, J. Comput. Phys..

[2]  C. Allen,et al.  Impact of Shape Parameterisation on Aerodynamic Optimisation of Benchmark Problem , 2016 .

[3]  R ForseyDavid,et al.  Hierarchical B-spline refinement , 1988 .

[4]  David R. Forsey,et al.  Hierarchical B-spline refinement , 1988, SIGGRAPH.

[5]  Malcolm A. Sabin,et al.  Eigenanalysis and Artifacts of Subdivision Curves and Surfaces , 2002, Tutorials on Multiresolution in Geometric Modelling.

[6]  Massimiliano Martinelli,et al.  Multi-level gradient-based methods and parametrisation in aerodynamic shape design , 2008 .

[7]  Sivakumaran Nadarajah,et al.  Adjoint-Based Aerodynamic Optimization Framework , 2014 .

[8]  S. Nadarajah Adjoint-Based Aerodynamic Optimization of Benchmark Problems , 2015 .

[9]  Ulrich Reif,et al.  Generalized Lane-Riesenfeld algorithms , 2013, Comput. Aided Geom. Des..

[10]  R. M. Hicks,et al.  Wing Design by Numerical Optimization , 1977 .

[11]  Alain Dervieux,et al.  HIERARCHICAL METHODS FOR SHAPE OPTIMIZATION IN AERODYNAMICS I: Multilevel algorithms for parametric shape optimization , 2006 .

[12]  Michael J. Aftosmis,et al.  Adaptive Shape Control for Aerodynamic Design , 2015 .

[13]  Alain Dervieux,et al.  A hierarchical approach for shape optimization , 1994 .

[14]  Feng Liu,et al.  Comparisons of Three Geometric Representations of Airfoils for Aerodynamic Optimization , 2003 .

[15]  Hugo Gagnon,et al.  Aerodynamic Shape Optimization of Benchmark Problems Using Jetstream , 2015 .

[16]  Thomas J. Cashman,et al.  NURBS-compatible subdivision surfaces , 2011 .

[17]  Xiaocong Han,et al.  An adaptive geometry parametrization for aerodynamic shape optimization , 2014 .

[18]  Christian B Allen,et al.  Aerodynamic shape optimization of a modern transport wing using only planform variations , 2009 .

[19]  Antony Jameson,et al.  Aerodynamic design via control theory , 1988, J. Sci. Comput..

[20]  Christian B Allen,et al.  CFD‐based optimization of aerofoils using radial basis functions for domain element parameterization and mesh deformation , 2008 .

[21]  John E. Bussoletti,et al.  "Fundamental" Parameteric Geometry Representations for Aircraft Component Shapes , 2006 .

[22]  Jean-Antoine Désidéri,et al.  Aerodynamic Shape Optimization using a Full and Adaptive Multilevel Algorithm , 2004 .

[23]  Weiyin Ma,et al.  Subdivision Surfaces for CAD , 2004 .

[24]  Z. Mengmeng,et al.  Transonic Airfoil and Wing Design Using Inverse and Direct Methods , 2015 .

[25]  David Salesin,et al.  Multiresolution curves , 1994, SIGGRAPH.

[26]  V. Braibant,et al.  Shape optimal design using B-splines , 1984 .

[27]  Malcolm A. Sabin,et al.  Behaviour of recursive division surfaces near extraordinary points , 1998 .

[28]  R. Duvigneau Adaptive Parameterization using Free-Form Deformation for Aerodynamic Shape Optimization , 2005 .

[29]  C. Allen,et al.  Metric-Based Mathematical Derivation of Efficient Airfoil Design Variables , 2015 .

[30]  Jean-Yves Trbpanier,et al.  Wing Aerodynamic Design Using an Optimized NURBS Geometrical Representation , 2000 .

[31]  Bowen Zhong,et al.  An Optimization Method Based On B-spline Shape Functions & the Knot Insertion Algorithm , 2007, World Congress on Engineering.

[32]  Praveen Chandrashekarappa,et al.  Wing shape optimization using FFD and twist parameterization , 2010 .

[33]  Daniel J Poole,et al.  Review of Aerofoil Parameterisation Methods for Aerodynamic Shape Optimisation , 2015 .

[34]  Juan J. Alonso,et al.  A Viscous Continuous Adjoint Approach for the Design of Rotating Engineering Applications , 2013 .

[35]  Jean-Antoine Désidéri,et al.  Free-form-deformation parameterization for multilevel 3D shape optimization in aerodynamics , 2003 .

[36]  John C. Vassberg,et al.  Gradient-Based Single and Multi-points Aerodynamic Optimizations with the elsA Software , 2015 .

[37]  B. Kulfan A Universal Parametric Geometry Representation Method - "CST" , 2007 .

[38]  Daniel J Poole,et al.  Application of Control Point-Based Aerodynamic Shape Optimization to Two-Dimensional Drag Minimization , 2014 .

[39]  H. Sobieczky Parametric Airfoils and Wings , 1999 .

[40]  Tony DeRose,et al.  Subdivision surfaces in character animation , 1998, SIGGRAPH.

[41]  Jean-Antoine Desideri,et al.  Inverse shape optimization problems and application to airfoils , 2005 .

[42]  E. Catmull,et al.  Recursively generated B-spline surfaces on arbitrary topological meshes , 1978 .

[43]  Juan J. Alonso,et al.  Stanford University Unstructured (SU 2 ): Open-source Analysis and Design Technology for Turbulent Flows , 2014 .

[44]  George Merrill Chaikin,et al.  An algorithm for high-speed curve generation , 1974, Comput. Graph. Image Process..

[45]  Michael A. Saunders,et al.  SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization , 2002, SIAM J. Optim..

[46]  Jacques Peter,et al.  Gradient-Based Aerodynamic Optimization with the elsA Software , 2014 .

[47]  Jean-Antoine Désidéri,et al.  Multi-Level Parameterization for Shape Optimization in Aerodynamics and Electromagnetics using a Particle Swarm Optimization Algorithm , 2006 .

[48]  A. Harrison,et al.  A Systematic Study on the Impact of Dimensionality for a Two-Dimensional Aerodynamic Optimization Model Problem , 2011 .

[49]  Michael J. Aftosmis,et al.  Aerodynamic Shape Optimization Benchmarks with Error Control and Automatic Parameterization , 2015 .

[50]  Thomas D. Economon,et al.  Stanford University Unstructured (SU 2 ): An open-source integrated computational environment for multi-physics simulation and design , 2013 .

[51]  C. Allen,et al.  CFD-based optimization of hovering rotors using radial basis functions for shape parameterization and mesh deformation , 2013 .

[52]  David J. J. Toal,et al.  Geometric Filtration Using Proper Orthogonal Decomposition for Aerodynamic Design Optimization , 2010 .

[53]  Daniel J Poole,et al.  Control Point-Based Aerodynamic Shape Optimization Applied to AIAA ADODG Test Cases , 2015 .