A comprehensive analysis of core polyadenylation sequences and regulation by microRNAs in a set of cancer predisposition genes.

[1]  A. Kassens Targets , 2019, Intemperate Spirits.

[2]  S. Meltzer,et al.  Inhibition of the miR-192/215–Rab11-FIP2 axis suppresses human gastric cancer progression , 2018, Cell Death & Disease.

[3]  G. Mills,et al.  Comprehensive Characterization of Alternative Polyadenylation in Human Cancer. , 2018, Journal of the National Cancer Institute.

[4]  Peng Guo,et al.  Tumor-suppressive microRNA-218 inhibits tumor angiogenesis via targeting the mTOR component RICTOR in prostate cancer , 2016, Oncotarget.

[5]  Min Zhang,et al.  miR128-1 inhibits the growth of glioblastoma multiforme and glioma stem-like cells via targeting BMI1 and E2F3 , 2016, Oncotarget.

[6]  Xia Jiang,et al.  Tumor-suppressing roles of miR-214 and miR-218 in breast cancer , 2016, Oncology reports.

[7]  A. E. Erson-Bensan,et al.  Alternative Polyadenylation: Another Foe in Cancer , 2016, Molecular Cancer Research.

[8]  P. Hainaut,et al.  Rare germline variant (rs78378222) in the TP53 3' UTR: Evidence for a new mechanism of cancer predisposition in Li-Fraumeni syndrome. , 2016, Cancer genetics.

[9]  Hsien-Da Huang,et al.  miRTarBase 2016: updates to the experimentally validated miRNA-target interactions database , 2015, Nucleic Acids Res..

[10]  Ying Sun,et al.  miR-218 suppressed the growth of lung carcinoma by reducing MEF2D expression , 2016, Tumor Biology.

[11]  Ralf Schmidt,et al.  A comprehensive analysis of 3′ end sequencing data sets reveals novel polyadenylation signals and the repressive role of heterogeneous ribonucleoprotein C on cleavage and polyadenylation , 2015, bioRxiv.

[12]  Lan Wu,et al.  MicroRNA-128 suppresses cell growth and metastasis in colorectal carcinoma by targeting IRS1. , 2015, Oncology reports.

[13]  J. Lieberman,et al.  miR-34 and p53: New Insights into a Complex Functional Relationship , 2015, PloS one.

[14]  D. Bartel,et al.  Predicting effective microRNA target sites in mammalian mRNAs , 2015, eLife.

[15]  Feng Li,et al.  Mir-192 suppresses apoptosis and promotes proliferation in esophageal aquamous cell caicinoma by targeting Bim. , 2015, International journal of clinical and experimental pathology.

[16]  H. Ooi,et al.  Genome-wide profiling of polyadenylation sites reveals a link between selective polyadenylation and cancer metastasis. , 2015, Human molecular genetics.

[17]  Z. Ling,et al.  Functions of MiRNA-128 on the Regulation of Head and Neck Squamous Cell Carcinoma Growth and Apoptosis , 2015, PloS one.

[18]  Jie Li,et al.  APASdb: a database describing alternative poly(A) sites and selection of heterogeneous cleavage sites downstream of poly(A) signals , 2014, Nucleic Acids Res..

[19]  Youwen Tan,et al.  A Serum MicroRNA Panel as Potential Biomarkers for Hepatocellular Carcinoma Related with Hepatitis B Virus , 2014, PloS one.

[20]  Sören Müller,et al.  APADB: a database for alternative polyadenylation and microRNA regulation events , 2014, Database J. Biol. Databases Curation.

[21]  Qiu-lin Tang,et al.  Plasma miR-122 and miR-192 as potential novel biomarkers for the early detection of distant metastasis of gastric cancer. , 2014, Oncology reports.

[22]  T. Speed,et al.  A positive feedback between p53 and miR-34 miRNAs mediates tumor suppression , 2014, Genes & development.

[23]  Hui Zhou,et al.  starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein–RNA interaction networks from large-scale CLIP-Seq data , 2013, Nucleic Acids Res..

[24]  M. Hentze,et al.  mRNA 3′end processing: A tale of the tail reaches the clinic , 2013, EMBO molecular medicine.

[25]  Abraham Weizman,et al.  miR-192 Directly Binds and Regulates Dicer1 Expression in Neuroblastoma , 2013, PloS one.

[26]  Hongwei Wang,et al.  A dynamic interplay between alternative polyadenylation and microRNA regulation: implications for cancer (Review). , 2013, International journal of oncology.

[27]  U. Ohler,et al.  Distinct polyadenylation landscapes of diverse human tissues revealed by a modified PA-seq strategy , 2013, BMC Genomics.

[28]  B. Vojtesek,et al.  Impaired Pre-mRNA Processing and Altered Architecture of 3′ Untranslated Regions Contribute to the Development of Human Disorders , 2013, International journal of molecular sciences.

[29]  P. Barbry,et al.  Tumor suppressor function of miR-483-3p on squamous cell carcinomas due to its pro-apoptotic properties , 2013, Cell cycle.

[30]  Min Shi,et al.  Diagnostic and biological significance of microRNA-192 in pancreatic ductal adenocarcinoma. , 2013, Oncology reports.

[31]  Martin Reczko,et al.  DIANA-microT web server v5.0: service integration into miRNA functional analysis workflows , 2013, Nucleic Acids Res..

[32]  N. Saini,et al.  miR-128 exerts pro-apoptotic effect in a p53 transcription-dependent and -independent manner via PUMA-Bak axis , 2013, Cell Death and Disease.

[33]  Yonggui Fu,et al.  Genome-wide alternative polyadenylation in animals: insights from high-throughput technologies. , 2012, Journal of molecular cell biology.

[34]  S. Berberich,et al.  MicroRNA-34a Modulates MDM4 Expression via a Target Site in the Open Reading Frame , 2012, PloS one.

[35]  P. Pujol,et al.  Decreased efficiency of MSH6 mRNA polyadenylation linked to a 20-base-pair duplication in Lynch syndrome families , 2012, Cell cycle.

[36]  Patrice M. Milos,et al.  An in-depth map of polyadenylation sites in cancer , 2012, Nucleic acids research.

[37]  Yanchun Deng,et al.  MiR‐483–5p suppresses the proliferation of glioma cells via directly targeting ERK1 , 2012, FEBS letters.

[38]  B. Vojtesek,et al.  The role of the 3' untranslated region in post-transcriptional regulation of protein expression in mammalian cells. , 2012, RNA biology.

[39]  Chengzhong Xing,et al.  microRNA-192, -194 and -215 are frequently downregulated in colorectal cancer. , 2012, Experimental and therapeutic medicine.

[40]  Kari Stefansson,et al.  A germline variant in the TP53 polyadenylation signal confers cancer susceptibility , 2011, Nature Genetics.

[41]  N. Proudfoot Ending the message: poly(A) signals then and now. , 2011, Genes & development.

[42]  Jianxing He,et al.  MicroRNA-192 targeting retinoblastoma 1 inhibits cell proliferation and induces cell apoptosis in lung cancer cells , 2011, Nucleic acids research.

[43]  Timothy R Pal,et al.  Prognostic significance of miR-215 in colon cancer. , 2011, Clinical colorectal cancer.

[44]  S. Meltzer,et al.  MicroRNA-192 and -215 are upregulated in human gastric cancer in vivo and suppress ALCAM expression in vitro , 2011, Oncogene.

[45]  Anjali J. Koppal,et al.  Supplementary data: Comprehensive modeling of microRNA targets predicts functional non-conserved and non-canonical sites , 2010 .

[46]  S. Vagner,et al.  Molecular mechanisms of eukaryotic pre-mRNA 3′ end processing regulation , 2009, Nucleic acids research.

[47]  Peter Calow,et al.  General Principles and Overview , 2009 .

[48]  C. Mayr,et al.  Widespread Shortening of 3′UTRs by Alternative Cleavage and Polyadenylation Activates Oncogenes in Cancer Cells , 2009, Cell.

[49]  Tongbin Li,et al.  miRecords: an integrated resource for microRNA–target interactions , 2008, Nucleic Acids Res..

[50]  C. Lutz,et al.  Alternative polyadenylation: a twist on mRNA 3' end formation. , 2008, ACS chemical biology.

[51]  M. Hentze,et al.  3′ end mRNA processing: molecular mechanisms and implications for health and disease , 2008, The EMBO journal.

[52]  Moshe Oren,et al.  Transcriptional activation of miR-34a contributes to p53-mediated apoptosis. , 2007, Molecular cell.

[53]  D. Gautheret,et al.  Conservation of alternative polyadenylation patterns in mammalian genes , 2006, BMC Genomics.

[54]  D. Cooper,et al.  A systematic analysis of disease-associated variants in the 3′ regulatory regions of human protein-coding genes I: general principles and overview , 2006, Human Genetics.

[55]  F. Slack,et al.  Oncomirs — microRNAs with a role in cancer , 2006, Nature Reviews Cancer.

[56]  A. Hatzigeorgiou,et al.  TarBase: A comprehensive database of experimentally supported animal microRNA targets. , 2005, RNA.

[57]  Haibo Zhang,et al.  Biased alternative polyadenylation in human tissues , 2005, Genome Biology.

[58]  C. Croce,et al.  miR-15 and miR-16 induce apoptosis by targeting BCL2. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[59]  Bin Tian,et al.  A large-scale analysis of mRNA polyadenylation of human and mouse genes , 2005, Nucleic acids research.

[60]  K. Offit,et al.  Hereditary cancer predisposition syndromes. , 2005, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[61]  V. Ambros The functions of animal microRNAs , 2004, Nature.

[62]  Y. Yatabe,et al.  Reduced Expression of the let-7 MicroRNAs in Human Lung Cancers in Association with Shortened Postoperative Survival , 2004, Cancer Research.

[63]  K. Ryan,et al.  Evidence that polyadenylation factor CPSF-73 is the mRNA 3' processing endonuclease. , 2004, RNA.

[64]  D. Bartel MicroRNAs Genomics, Biogenesis, Mechanism, and Function , 2004, Cell.

[65]  P. Shannon,et al.  Cytoscape: a software environment for integrated models of biomolecular interaction networks. , 2003, Genome research.

[66]  D. Gautheret,et al.  Sequence determinants in human polyadenylation site selection , 2003, BMC Genomics.

[67]  C. Croce,et al.  Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[68]  C. MacDonald,et al.  Reexamining the polyadenylation signal: were we wrong about AAUAAA? , 2002, Molecular and Cellular Endocrinology.

[69]  D Gautheret,et al.  Identification of alternate polyadenylation sites and analysis of their tissue distribution using EST data. , 2001, Genome research.

[70]  Matthias W. Hentze,et al.  Increased efficiency of mRNA 3′ end formation: a new genetic mechanism contributing to hereditary thrombophilia , 2001, Nature Genetics.

[71]  D. Gautheret,et al.  Patterns of variant polyadenylation signal usage in human genes. , 2000, Genome research.

[72]  D. Hanahan,et al.  The Hallmarks of Cancer , 2000, Cell.

[73]  Jing Zhao,et al.  Formation of mRNA 3′ Ends in Eukaryotes: Mechanism, Regulation, and Interrelationships with Other Steps in mRNA Synthesis , 1999, Microbiology and Molecular Biology Reviews.

[74]  J. Wilusz,et al.  Cleavage site determinants in the mammalian polyadenylation signal. , 1995, Nucleic acids research.

[75]  T. Shenk,et al.  The 64-kilodalton subunit of the CstF polyadenylation factor binds to pre-mRNAs downstream of the cleavage site and influences cleavage site location , 1994, Molecular and cellular biology.

[76]  G. Christofori,et al.  Cleavage and polyadenylation factor CPF specifically interacts with the pre‐mRNA 3′ processing signal AAUAAA. , 1991, The EMBO journal.

[77]  Nick Proudfoot,et al.  Poly(A) signals , 1991, Cell.

[78]  M. Wickens,et al.  Point mutations in AAUAAA and the poly (A) addition site: effects on the accuracy and efficiency of cleavage and polyadenylation in vitro. , 1990, Nucleic acids research.

[79]  N. Proudfoot,et al.  Position-dependent sequence elements downstream of AAUAAA are required for efficient rabbit β-globin mRNA 3′ end formation , 1987, Cell.

[80]  M. Wickens,et al.  Role of the conserved AAUAAA sequence: four AAUAAA point mutants prevent messenger RNA 3' end formation. , 1984, Science.

[81]  N. Proudfoot,et al.  3′ Non-coding region sequences in eukaryotic messenger RNA , 1976, Nature.