Inhomogeneous spin $q$-Whittaker polynomials

We introduce and study an inhomogeneous generalization of the spin q-Whittaker polynomials from [BW17]. These are symmetric polynomials, and we prove a branching rule, skew dual and non-dual Cauchy identities, and an integral representation for them. Our main tool is a novel family of deformed Yang-Baxter equations.

[1]  L. Petrov,et al.  Spin q-Whittaker Polynomials and Deformed Quantum Toda , 2020, Communications in Mathematical Physics.

[2]  A. Borodin,et al.  Shift‐invariance for vertex models and polymers , 2019, Proceedings of the London Mathematical Society.

[3]  Alexey Bufetov,et al.  Observables of Stochastic Colored Vertex Models and Local Relation , 2020, Communications in Mathematical Physics.

[4]  Leonid Petrov,et al.  Refined Cauchy identity for spin Hall-Littlewood symmetric rational functions , 2020, J. Comb. Theory A.

[5]  A. Borodin,et al.  Spin q–Whittaker polynomials , 2017, Advances in Mathematics.

[6]  Travis Scrimshaw,et al.  Double Grothendieck Polynomials and Colored Lattice Models , 2020, International Mathematics Research Notices.

[7]  A. Borodin,et al.  Observables of coloured stochastic vertex models and their polymer limits , 2020, 2001.04913.

[8]  A. Borodin,et al.  Nonsymmetric Macdonald polynomials via integrable vertex models , 2019, Transactions of the American Mathematical Society.

[9]  M. Wheeler,et al.  Modified Macdonald Polynomials and Integrability , 2018, Communications in Mathematical Physics.

[10]  L. Petrov,et al.  Yang-Baxter random fields and stochastic vertex models , 2019, 1905.06815.

[11]  A. Borodin,et al.  Phase transitions in the ASEP and stochastic six-vertex model , 2016, The Annals of Probability.

[12]  A. Borodin,et al.  Coloured stochastic vertex models and their spectral theory , 2018, Astérisque.

[13]  A. Aggarwal Current fluctuations of the stationary ASEP and six-vertex model , 2016, 1608.04726.

[14]  A. Borodin,et al.  Lectures on Integrable Probability: stochastic vertex models and symmetric functions , 2016, 1605.01349.

[15]  Paul Zinn-Justin,et al.  Hall polynomials, inverse Kostka polynomials and puzzles , 2016, J. Comb. Theory, Ser. A.

[16]  A. Borodin,et al.  Inhomogeneous exponential jump model , 2017, 1703.03857.

[17]  A. Borodin Symmetric elliptic functions, IRF models, and dynamic exclusion processes , 2017, 1701.05239.

[18]  K. Motegi Combinatorial properties of symmetric polynomials from integrable vertex models in finite lattice , 2016, 1608.02269.

[19]  G. Bosnjak,et al.  Construction of R-matrices for symmetric tensor representations related to U q ( sl n ˆ ) , 2016, 1607.07968.

[20]  J. Gier,et al.  A New Generalisation of Macdonald Polynomials , 2016, 1605.07200.

[21]  A. Borodin,et al.  Higher spin six vertex model and symmetric rational functions , 2016, 1601.05770.

[22]  P. Zinn-Justin,et al.  Refined Cauchy/Littlewood identities and six-vertex model partition functions: III. Deformed bosons , 2015, 1508.02236.

[23]  A. Borodin,et al.  Spectral Theory for Interacting Particle Systems Solvable by Coordinate Bethe Ansatz , 2015, Communications in Mathematical Physics.

[24]  J. Gier,et al.  Matrix product formula for Macdonald polynomials , 2015, 1505.00287.

[25]  Ivan Corwin,et al.  Random-walk in Beta-distributed random environment , 2015, 1503.04117.

[26]  A. Borodin On a family of symmetric rational functions , 2014, 1410.0976.

[27]  V. Mangazeev On the Yang–Baxter equation for the six-vertex model , 2014, 1401.6494.

[28]  A. Borodin,et al.  Spectral theory for the $q$-Boson particle system , 2013, Compositio Mathematica.

[29]  K. Sakai,et al.  Vertex models, TASEP and Grothendieck polynomials , 2013, 1305.3030.

[30]  C. Korff Cylindric Versions of Specialised Macdonald Functions and a Deformed Verlinde Algebra , 2011, 1110.6356.

[31]  P. Zinn-Justin,et al.  Six-vertex, Loop and Tiling Models: Integrability and Combinatorics , 2009, 0901.0665.

[32]  D. Bump,et al.  Schur Polynomials and The Yang-Baxter Equation , 2009, 0912.0911.

[33]  N. Tsilevich Quantum inverse scattering method for the q-boson model and symmetric functions , 2005, math-ph/0510073.

[34]  S. Fomin,et al.  Yang-Baxter equation, symmetric functions and Grothendieck polynomials , 1993, hep-th/9306005.

[35]  J. Stembridge A short proof of macdonald's conjecture for the root systems of type a , 1988 .

[36]  I. G. MacDonald,et al.  Symmetric functions and Hall polynomials , 1979 .